Resumen de: WO2025109176A1
This invention relates to Sarbecovirus binding agents, in particular antibodies and antigen-binding fragments thereof, which are capable of potently neutralizing a Sarbecovirus, in particular capable of neutralizing any one or both of SARS-CoV-2, including SARS-CoV-2 variants, and SARS-CoV- 1, and affinity matured variants thereof. The binding agents, in particular the antibodies and antibody fragments, have one or more favourable antibody development characteristics. The invention also relates to methods using these binding agents and uses thereof.
Resumen de: WO2025108530A1
The present invention describes the formulation of a phytotherapy product, namely an inhalable solution developed from a natural extract of quercetin, either alone or in combination with resveratrol, rigorously selected for their synergistic effects on the respiratory system and their potential in alleviating symptoms associated with respiratory diseases such as asthma, COPD, lung cancer, COVID-19, and long COVID. The solution is intended to be inhaled using a nebuliser or other inhalation device intended to transform the solution into an aerosol in order to have a direct effect on the bronchi and minimise side effects. Quercetin has anti-inflammatory, antioxidant, immunomodulatory, and antiviral properties. This document describes, through various examples, the manufacturing process developed to obtain a solution for inhalation.
Resumen de: US2025171486A1
The present disclosure relates to N4-isobutyryloxycytidine analog synthesis and to the anti-viral use thereof against dengue virus, influenza virus, and SARS-COV-2 virus.
Resumen de: US2025171862A1
Methods for the rapid detection of the presence or absence of SARS-CoV-2, influenza A and influenza B in a biological or non-biological sample are described. The methods can include performing an amplifying step, a hybridizing step, and a detecting step. Furthermore, primers and probes targeting SARS-CoV-2, influenza A, and influenza B and kits are provided that are designed for the detection of SARS-CoV-2, influenza A and influenza B.
Resumen de: US2025170246A1
Compositions and methods are disclosed for treating coronavirus infections, such as SARS CoV-2 coronavirus infections. For example, a composition is disclosed that contains one, two, or more cytidine diphosphate (CDP)-conjugated phospholipid precursors selected from the group consisting of CDP-choline (CDP-CHO), CDP-ethanolamine (CDP-ETH), and CDPdiacylglycerol (CDP-DAG) in combination with one or more agents for treating COVID-19, such as corticosteroids, antibodies, or antivirals, in a pharmaceutically acceptable carrier. Also disclosed is a method of treating coronavirus (e.g. SARS CoV-2) infection in a subject that involves administering to the subject one, two, or more cytidine diphosphate (CDP)-conjugated phospholipid precursors selected from the group consisting of CDP-choline (CDP-CHO), CDPethanolamine (CDP-ETH), and CDP-diacylglycerol (CDP-DAG) in combination with agents for treating COVID-19, such as corticosteroids, antibodies, or antivirals.
Resumen de: US2025170084A1
This invention provides methods for treating endothelial dysfunction by administering an effective amount of citrulline to a patient. The patients may be suffering from acute respiratory distress syndrome (ARDS), sepsis, or infection by COVID-19 (Coronavirus Disease 2019); COVID-19 patients may be at risk of developing endothelial dysfunction, or they may be experiencing endothelial dysfunction. The effective amount of citrulline is sufficient to reduce the uncoupling of endothelial nitric oxide synthase (eNOS) or to reduce the formation of free radicals. Citrulline may be administered orally; intravenously; or both orally and intravenously in a sequential manner. Sequential administration of citrulline may be in three phases, such as (a) an initial phase in which citrulline is administered orally, (b) an intermediate phase wherein citrulline is administered intravenously, and (c) a final phase wherein citrulline is administered orally. The intermediate phase may be while the patient's breathing is being assisted mechanically.
Resumen de: US2025169661A1
Device to close a toilet lid before flushing contains a base part (2) in which a drive device in form of an electrical motor (7) is situated. On top of the base part (2) a motion detector (5) is located that controls a movable arm (3). Within the base part a motherboard (6) is situated. With help from the movement that emerge when flushing the motion detector (5) is activated, that in turn activates the electrical motor (7) that is connected with the movable arm (3) on the front side of the base part (2). The arm (3) opens up 45 degrees, pushes the toilet lid and returns to the origin mode. The detector (4) senses that the lid is no longer resting against the base part (2) and shuts of the device (1). In this way the source of the power consumption, which is a rechargeable battery (3), is limited. The lid is closed completely before flushing and bacteria, virus and the spread of Covid 19 is reduced.
Resumen de: US2025171864A1
The present invention relates to a rapid method to perform reverse transcription loop-mediated isothermal amplification (RT-LAMP) and LAMP at room temperature between 25-42° C., more specifically at 25-37° C., to detect RNA/DNA in a sample and a reagent kit thereof. Further, the invention relates to an in vitro method to detect SARS-CoV2 using RT-LAMP at room temperature between 25-42° C., more specifically at 37° C. The reagent kit comprises of enzymes/proteins—Klenow exo−/−, ApaI, High fidelity Taq Pol, Rpa32, StpA, AMV-RT for reverse transcriptase; buffer composition of—Tris-HCl, MgSO4, KCl, DTT, PEG, DMSO, 1 mM dNTPs each, at least 4 primers, and fluorescent or colorimetric dye.
Resumen de: US2025171546A1
Methods for treating coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, are described. The methods include administration of combinations of agents, including combinations that include dupilumab. The methods can be used to treat subjects diagnosed with a SARS-CoV-2 infection, including those already hospitalized to treat COVID-19 and/or those also having lymphopenia, to reduce the severity of outcomes related to COVID-19, such as admittance to the intensive care unit (ICU), mechanical ventilation, and/or death, particularly over periods of time longer than a month or two months following the initial administration of the agents. Compositions for use in the treatment of COVID-19 are also described.
Resumen de: US2025171511A1
Antiviral peptides and formulations thereof are described for use in treating or preventing one or more symptoms of coronavirus infections. Peptides derived from human beta defensin 2 have been shown to have antiviral properties against different variants of coronavirus including cross-linking viral particles, blocking cell-to-cell fusion, and/or inhibiting viral release. Pharmaceutical compositions and methods of using one or more antiviral peptides are also provided. Preferably, the antiviral peptides are administered via intranasal route to prevent or alleviate one or more symptoms of coronavirus infections such as reducing the syncytial formation and lung damage.
Resumen de: US2025171449A1
The invention relates to tryptanthrin derivatives with thiosemicarbazone substitution of the general formulae I and II, where R1-R8 are independently H, OH, alkyl with 1 to 6 carbon atoms, C(CH3)3, allyl, propargyl, ben-zyl, phenyl, F, Cl, Br, I, CH2OH, O (alkyl), CF3, OCF3, CN, COOH, COO(alkyl), CONH2, CONH(alkyl), NO2, N(alkyl)2, NH(alkyl), NHCO(alkyl), where the alkyl has 1 to 6 carbon atoms, or R1-R2 or R2-R3 or R3-R4 or R5-R6 or R6-R7 or R7-R8 is —CH═CH—CH═CH—, i.e., a fused benzene ring, X and Z are independently H, alkyl of 1 to 6 carbon atoms, benzyl or phenyl. The compounds combine a structural motif suitable for PLpro targeting, have strong affinity and selectivity for RNA over DNA, and at the same time effectively chelate ferric and ferrous ions. Thus, these compounds have the desired properties for potential use as inhibitors of the production of SARS-COV-2 viral particles and can thus be used for the preparation drugs for the treatment of coronavirus diseases, especially COVID-19.
Resumen de: ZA202407723B
The present disclosure provides a method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection on the basis of receptor binding, including: subjecting crosslinked agarose as a matrix to surface carboxyl modification to obtain a magnetic agarose microsphere, and covalently coupling the magnetic agarose microsphere with a receptor protein to obtain a receptor protein-coupled magnetic agarose microsphere; allowing the receptor protein covalently binding to a surface of the receptor protein-coupled magnetic agarose microsphere to recognize and bind to a receptor-binding domain (RBD) of an outer membrane protein S of a SARS-CoV-2 sample, which simulates a binding process of the SARS-CoV-2 to a host cell to capture the SARS-CoV-2; subjecting the magnetic microsphere to washing, purification, and elution successively to obtain the SARS-CoV-2 with a cell binding ability; and detecting by an immunobinding-fluorescence quantitative polymerase chain reaction (PCR) combination, and evaluating infectivity and transmissibility of the SARS-CoV-2. The method is suitable for evaluating the replication and transmission of the SARS-CoV-2 in a patient infected with the SARS-CoV-2 during a treatment process and the infectivity of the SARS-CoV-2 carried by a patient with relapse symptoms after recovery.
Resumen de: MA61946B1
The disclosure relates to antibodies useful for the prevention, treatment and/or diagnosis of coronavirus infections, and diseases and/or complications associated with coronavirus infections, including COVID-19. In particular, the disclosure relates to antibodies capable of binding to the spike protein of coronavirus SARS-CoV-2 and uses thereof.
Resumen de: EP4560010A1
The present invention relates to a COVID-19 infection model using alveolar organoids. Respiratory virus-infected alveolar organoids produced according to the present invention are expected to be usefully used in preclinical or clinical drug screening and the like for the development of therapeutic agents for SARS-CoV-2 infection.
Resumen de: WO2024018364A1
Provided is an enveloped virus-like particle (eVLP) comprising a substantially full-length recombinant SARS-CoV-2 spike (S) protein. The eVLP may further comprise an additional recombinant SARS-CoV-2 S protein having a different sequence, another recombinant viral antigen, or a recombinant non-viral protein. The eVLP is derived from an animal cell, such as a CHO cell, expressing the recombinant SARS-CoV-2 spike protein. Also provided are methods of producing such eVLPs, compositions including such eVLPs, and methods and uses for the induction of an immune response against a SARS-CoV-2 spike protein and/or prevention of COVID-19 or SARS-CoV-2 infection, employing such eVLPs.
Resumen de: EP4560021A1
The present invention relates to an RNA encoding the S protein of SARS-COV-2, a vaccine comprising the RNA, and uses thereof. The present invention also relates to a universal polynucleotide molecule comprising a 5'-UTR and/or a 3'- UTR, and a nucleic acid sequence encoding a protein and/or polypeptide of interest, and optionally comprising a polyA.
Resumen de: WO2025106738A1
Disclosed herein are compositions comprising protein antigens and RNA encoding the same (e.g., compositions comprising protein antigens and RNA encoding antigens) that can be used to induce an immune response against SARS-CoV-2. Also disclosed herein are immunogenic compositions and medical preparations comprising the same, and methods of making and using the same. In some embodiments, the technologies provided herein can result in an improved immune response as compared to current SARS-COV-2 vaccines.
Resumen de: WO2025104281A1
The present invention belongs to the field of compounds for use in therapeutic treatment, and more particularly hop derived compounds for use in the treatment of diseases caused by coronaviruses. The main field of application is human health, through the development of new active beta-acid-type antivirals against SARS-CoV-2. The present invention relates to hop derived compounds according to the invention for use in the treatment of diseases caused by a virus chosen from coronaviruses belonging to the Coronaviridae family.
Resumen de: US2025164510A1
A method of assessing a COVID-19 infection in a person, the method comprising analysing the concentration or levels of one or more biomarkers in a biological sample from a person, wherein the one or more biomarkers comprises γ′ fibrinogen, and wherein concentration or levels of γ′ fibrinogen are elevated in a biological sample from a person infected with COVID-19 and can be used for predicting COVID-19 disease severity and/or for making a prognosis of severe COVID-19 disease in a person infected with COVID-19.
Resumen de: WO2025106738A1
Disclosed herein are compositions comprising protein antigens and RNA encoding the same (e.g., compositions comprising protein antigens and RNA encoding antigens) that can be used to induce an immune response against SARS-CoV-2. Also disclosed herein are immunogenic compositions and medical preparations comprising the same, and methods of making and using the same. In some embodiments, the technologies provided herein can result in an improved immune response as compared to current SARS-COV-2 vaccines.
Resumen de: WO2025106754A1
This disclosure relates to the field of RNA to prevent or treat coronavirus infection. In particular, the present disclosure relates to methods and agents for vaccination against coronavirus infection and inducing effective coronavirus antigen-specific immune responses such as antibody and/or T cell responses. Specifically, in one embodiment, the present disclosure relates to methods comprising administering to a subject RNA encoding a peptide or protein comprising an epitope of SARS-CoV-2 spike protein (S protein) for inducing an immune response against coronavirus S protein, in particular S protein of SARS-CoV-2, in the subject, i.e., vaccine RNA encoding vaccine antigen.
Resumen de: US2025161518A1
The invention concerns a microwave disinfection device (2) configured to destroy/inactivate the SARS-COV-2 and H1N1 viruses and comprising a microwave irradiation section (22) configured to: irradiate microwave signals that have an incident electric field amplitude not higher than 6 V/m and frequencies that are included in the 8-10 GHz band and are spaced from each other by a step comprised between 10 MHZ and 100 MHz; irradiate the microwave signals at each individual frequency for a time interval comprised between 50 ms and 1 s; and irradiate the microwave signals with duty cycles comprised between 5% and 50%.
Resumen de: US2025161433A1
The present invention relates to universal sarbecovirus vaccines that specifically express an interferon. This live universal sarbecovirus vaccine elicits mucosal immunity and heterotypic immunity against various sarbecoviruses, including SARS-CoV-1, SARS-CoV-2, and its variants. Interferon directly encoded from the genome of the live universal sarbecovirus overrides the virus-induced “delayed type-I interferon”, resulting in enhancement of mucosal T cell responses. The present invention further relates to uses of the vaccines for the preparation of pharmaceutical compositions, methods of treating or preventing viral infections, and kits comprising the vaccines.
Resumen de: US2025163107A1
Provided are a fusion protein and use thereof. Provided is a fusion protein, comprising a trimerization block and an immunogenic block which are connected by a linker, wherein the trimerization block comprises one or more of repeat units set forth in SEQ ID NO. 1; the immunogenic block is an immunogenic protein of a pathogen, for example, being selected from a coronavirus RBD block, an HIV membrane protein or an influenza virus hemagglutinin protein, and immunogenic fragments thereof. Compared with an immunogen monomer, the trimer can generate a higher neutralizing antibody level, does not induce a strong antibody against the trimerization block in a human body, and can promote the immune response of the organism to be focused on the immunogenic block.
Nº publicación: US2025163026A1 22/05/2025
Solicitante:
DHANOA DALJIT SINGH [US]
Dhanoa Daljit Singh
Resumen de: US2025163026A1
The present invention is concerned with novel deuterium-enriched compounds of the general chemical structural formula I., and pharmaceutically acceptable salts, compositions, and methods of use thereof,wherein, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25 are independently D (deuterium), H (hydrogen). The compounds of general chemical formula I are novel deuterium-enriched analogs of the SARS-CoV-2 main protease (MPro) inhibitor Nirmatrelvir for the treatment of COVID-19 and related diseases caused by various coronaviruses and their variants.