Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 561 resultados
LastUpdate Última actualización 13/12/2025 [07:08:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Resultados 50 a 75 de 561 nextPage  

電解システムの制御装置および電解システム

NºPublicación:  JP2025176382A 04/12/2025
Solicitante: 
本田技研工業株式会社
JP_2025176382_PA

Resumen de: US2025361635A1

A control device for an electrolysis system includes a deterioration prediction unit that predicts a degree of deterioration of each of a water electrolysis stack and a compression stack, and a supplied electrical current control unit that controls an electrical current that is supplied to the water electrolysis stack and an electrical current that is supplied to the compression stack, wherein the supplied electrical current control unit controls the electrical current that is supplied to the stack having a larger degree of deterioration from among the water electrolysis stack and the compression stack to be constant, and adaptively controls the electrical current that is supplied to the stack having a smaller degree of deterioration from among the water electrolysis stack and the compression stack.

水素生成組成物及びその製造方法、並びに水素の生成方法

NºPublicación:  JP2025176442A 04/12/2025
Solicitante: 
トヨタ自動車株式会社
JP_2025176442_A

Resumen de: JP2025176442A

【課題】本発明は、水素を高収率及び高生成量で生成し得る手段を提供する。【解決手段】本発明の一態様は、粉体の形態の水素化マグネシウム及び粉体の形態のクエン酸を含み、水素化マグネシウムに対するクエン酸の質量比が2.5から3.5の範囲であり、加圧成型物の形態である、水素生成組成物に関する。本発明の別の一態様は、水素生成組成物の製造方法及び水素の生成方法に関する。【選択図】なし

PROCESS AND FACILITY FOR OBTAINING A HYDROGEN-CONTAINING PRODUCT

NºPublicación:  WO2025247582A1 04/12/2025
Solicitante: 
LINDE GMBH [DE]
LINDE GMBH
WO_2025247582_PA

Resumen de: WO2025247582A1

The invention relates to a method and a facility (100) for producing a hydrogen-containing product, wherein ammonia (1) is subjected to a pretreatment (10) so as to obtain an ammonia feed (2), and the ammonia feed (2) is converted into a cracked gas (3), containing ammonia, hydrogen, and nitrogen, in a heated ammonia cracker (20), a sulfur-free fuel gas being burned so as to form a water-containing flue gas (4a) in order to heat the ammonia cracker (20). The invention is characterized in that at least part of the water-containing flue gas is cooled to below the dew point during the pretreatment (10) of ammonia, condensed water and heated ammonia being obtained.

SYSTEM AND METHOD FOR ELECTROLYTIC PRODUCTION OF HYDROGEN

NºPublicación:  WO2025250529A1 04/12/2025
Solicitante: 
BEST PLANET SCIENCE LLC [US]
BEST PLANET SCIENCE LLC
WO_2025250529_PA

Resumen de: WO2025250529A1

Systems and methods for generating hydrogen by electrolysis of water using electricity produced using a vortex generator that results in cavitation and implosion processes in a vortex. The vortex generator can produce conditions within the vortex generator that can allow deuterium molecules naturally occurring in water to acquire sufficient kinetic energy to overcome the Coulomb barrier so that their nuclei can get close enough to each other to undergo various nuclear reactions, discharging a large amount of nuclear energy at the microstate, imparting energy to the water, which can be used to drive a turbine to generate electricity, and the resulting electricity can be used at least in part for the electrolysis of water.

INTEGRATED PROCESSES FOR PRODUCING OLEFINIC PRODUCTS FROM CARBON DIOXIDE

NºPublicación:  WO2025250426A1 04/12/2025
Solicitante: 
EXXONMOBIL TECH AND ENGINEERING COMPANY [US]
EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
WO_2025250426_PA

Resumen de: WO2025250426A1

Olefinic products may be produced from various sources. For example, methods of production of olefinic products from carbon dioxide may include: performing an electrolysis reaction of water to form hydrogen and oxygen; providing at least a portion of the hydrogen and carbon dioxide to a methanation unit; reacting the hydrogen and the carbon dioxide via a methanation reaction in the methanation unit to produce methane and water; providing at least a portion of the methane and at least a portion of the oxygen to an oxidative coupling unit; and reacting the methane and the oxygen via an oxidative coupling reaction in the oxidative coupling unit to produce an olefinic product, water, and optionally, additional carbon dioxide.

LOW TEMPERATURE PRODUCTION OF HYDROGEN PEROXIDE

NºPublicación:  WO2025248075A1 04/12/2025
Solicitante: 
HPNOW APS [DK]
HPNOW APS
WO_2025248075_PA

Resumen de: WO2025248075A1

Embodiments for an apparatus for producing hydrogen peroxide are provided. The apparatus includes a heat exchanger configured to remove heat from deionized water prior to passing the deionized water through the anode passage of one or more cells. The apparatus is also configured to oxidize the deionized water in the anode passage of the one or more cells. The apparatus also includes a controller configured to control the heat exchanger and a first one or more temperature sensors electrically coupled to the controller. The first one or more temperature sensors are configured to provide a first temperature reading based on a temperature of the one or more cells, wherein the controller is configured to control the heat exchanger to maintain the first temperature reading at or below a first temperature threshold.

MEMBRANE-ELECTRODE ASSEMBLY FOR A WATER ELECTROLYSER

NºPublicación:  WO2025248230A1 04/12/2025
Solicitante: 
JOHNSON MATTHEY HYDROGEN TECHNOLOGIES LTD [GB]
JOHNSON MATTHEY HYDROGEN TECHNOLOGIES LIMITED
WO_2025248230_PA

Resumen de: WO2025248230A1

A membrane-electrode assembly for a water electrolyser is provided. The membrane-electrode assembly comprises a polymer electrolyte membrane with a first major surface and a second major surface, and an anode component in contact with the first major surface of the polymer electrolyte membrane. The anode component comprises (i) a porous framework of polymer fibres at least partially coated with a metal-containing thin film; and (ii) an oxygen evolution reaction (OER) catalyst supported on the porous framework of polymer fibres.

WATER ELECTROLYSIS STACK AND WATER ELECTROLYSIS SYSTEM

NºPublicación:  EP4656774A2 03/12/2025
Solicitante: 
TOYOTA MOTOR CO LTD [JP]
TOYOTA JIDOSHA KABUSHIKI KAISHA
EP_4656774_PA

Resumen de: EP4656774A2

Provided is a water electrolysis stack capable of improving durability. The water electrolysis stack includes a cell stack that is formed by stacking a plurality of water electrolysis cells, an inter-cell space is formed between each adjacent ones of the water electrolysis cells in the cell stack, and gas flows into the inter-cell spaces in water electrolysis.

CATALYST-LOADED CARBON, MEMBRANE ELECTRODE ASSEMBLY USING SAME FOR POLYMER ELECTROLYTE FUEL CELLS, AND POLYMER ELECTROLYTE FUEL CELL

NºPublicación:  EP4657576A1 03/12/2025
Solicitante: 
ISHIFUKU METAL IND [JP]
TPR CO LTD [JP]
Ishifuku Metal Industry Co., Ltd,
TPR CO., LTD
EP_4657576_PA

Resumen de: EP4657576A1

Problem To provide a catalyst-loaded carbon having a high initial activity and excellent durability. Solution A catalyst-loaded carbon including catalyst particles and a carbon support, the catalyst particles being loaded on the carbon support. The carbon support has a crystallite size of 3.5 nm or greater and 9 nm or less, a BET specific surface area of 300 m<sup>2</sup>/g or greater and 450 m<sup>2</sup>/g or less, and a pore size of 5.0 nm or greater and 20.0 nm or less. The catalyst particles are made of platinum or a platinum alloy, have a crystallite size of 2.5 nm or greater and 5.0 nm or less and a surface area of 40 m<sup>2</sup>/g or greater and 80 m<sup>2</sup>/g or less.

ELECTROLYSER SYSTEM AND METHOD OF ELECTRODE MANUFACTURE

NºPublicación:  EP4655429A1 03/12/2025
Solicitante: 
SUNGREENH2 PTE LTD [SG]
Sungreenh2 Pte. Ltd
KR_20250150556_PA

Resumen de: AU2024213038A1

An electrolyser system and method of electrode manufacture. The electrolyser system may comprise a first vessel in communication with an electrolyser stack, a power supply, an electrode, a separator, a membrane, and a second vessel in communication with the electrolyser stack. The electrode may comprise a catalytic material and a micro- porous and/or nano-porous structure. The method of electrode manufacture may comprise providing a substrate, contacting the substrate with an acidic solution, applying an electric current to the substrate, simultaneously depositing a main material and supporting material comprising a scarifying material onto the substrate, and leaching the scarifying material.

PEM水電解バイポーラプレート及びその製造方法

NºPublicación:  JP2025539180A 03/12/2025
Solicitante: 
中国科学院大▲連▼化学物理研究所
JP_2025539180_PA

Resumen de: WO2024114488A1

The present invention belongs to the field of water electrolysis for hydrogen production. Disclosed are a PEM water electrolysis bipolar plate and a manufacturing method. The present invention uses a stainless steel plate as a substrate. The substrate is provided with through hole structures which have the same structure as flow channel ridges and positions of which match positions of the flow channel ridges. The upper surface and the lower surface of the substrate are both provided with a titanium layer, and the titanium layers fill the through hole structures so as to enable the upper titanium layer and the lower titanium layer to be connected. A spherical dehydrogenated titanium powder layer and a functional coating are successively provided on the surface of each of the titanium layers. The functional coatings form the flow channel ridges, flow disturbing pillars and a hydrogen-oxygen frame of the bipolar plate. The pore diameter of the spherical dehydrogenated titanium powder layers is 100 nm to 10 μm; and the titanium layers, the spherical dehydrogenated titanium powder layers and the functional coatings all contain titanium powders. The present invention can improve the conductivity of the bipolar plate while using a low-cost stainless steel plate, thus improving the overall properties of the water electrolysis bipolar plate.

PROCESS FOR CATALYTIC CRACKING OF AMMONIA

NºPublicación:  EP4655243A1 03/12/2025
Solicitante: 
JOHNSON MATTHEY DAVY TECHNOLOGIES LTD [GB]
Johnson Matthey Davy Technologies Limited
KR_20250107272_PA

Resumen de: CN120344485A

The present invention relates to the field of hydrogen production from catalytic cracking of ammonia. The present invention comprises a primary cracking path comprising one or more catalyst-containing reaction tubes disposed within a roasting-type ammonia cracking reactor; and a parallel cleavage path comprising one or more secondary ammonia cleavage reactors arranged in succession and fluidly connected to each other. The invention can be used for producing hydrogen from ammonia.

WATER ELECTROLYSIS MEMBRANE ELECTRODE, METHOD FOR PREPARING THE SAME, AND WATER ELECTROLYZER APPLYING THE SAME

NºPublicación:  EP4656772A1 03/12/2025
Solicitante: 
EVE HYDROGEN ENERGY CO LTD [CN]
EVE Hydrogen Energy Co., LTD
EP_4656772_A1

Resumen de: EP4656772A1

The present disclosure provides a water electrolysis membrane electrode, a method for preparing the water electrolysis membrane electrode, and a water electrolyzer applying the water electrolysis membrane electrode. The water electrolysis membrane electrode includes a cathode gas diffusion layer, a cathode catalytic layer, an anion exchange membrane, a hydrophobic anode catalytic layer, and an anode gas diffusion layer that are stacked in sequence. Raw materials for preparing the hydrophobic anode catalytic layer include an anode catalyst, a hydrophobic material, and an anode ionomer. A mass ratio of the anode catalyst, the hydrophobic material, and the anode ionomer is 10:1-3:1-3. A porosity of the hydrophobic anode catalytic layer is 10%-40%.

ELECTROLYSER SYSTEM FOR AN INTERMITTENT ELECTRICITY SUPPLY

NºPublicación:  EP4655430A1 03/12/2025
Solicitante: 
CERES IP CO LTD [GB]
Ceres Intellectual Property Company Limited
KR_20250143144_PA

Resumen de: CN120569516A

The invention provides an electrolytic cell system (10). The electrolytic cell system comprises a heat storage unit (14) and an electrolytic cell (16). The heat storage unit (14) comprises at least one heat source feed inlet. The electrolytic cell (16) comprises at least one electrolytic cell cell (20), a steam inlet and at least one exhaust gas outlet. The exhaust outlet is connected to the heat source feed inlet to heat the heat storage unit (14). The heat storage unit (14) is configured to use its stored heat to generate steam for one of feeding into the steam inlet at a time and generating electricity or both feeding into the steam inlet at the same time and generating electricity. The invention also provides a system comprising an intermittent or variable power source (12) and an electrolytic cell system (10) as defined above. The intermittent or variable power source (12) may be configured to simultaneously or separately power the electrolysis cell (16) and heat the heat storage unit (14) via a heating element.

A FLOATING POWER PLANT AND AN OFFSHORE ELECTRICITY GENERATION PLANT

NºPublicación:  EP4656506A1 03/12/2025
Solicitante: 
SOLARDUCK HOLDING B V [NL]
SolarDuck Holding B.V
EP_4656506_PA

Resumen de: EP4656506A1

A floating power plant (2) comprises a plurality of interconnected floating platforms (6) which are movable with respect to each other. Each floating platform (6) comprises a floating member (8), wherein the floating member (8) of at least one floating platform (6) has an internal chamber (9) for storing hydrogen. The floating power plant (2) is provided with an electrolyzer including a hydrogen output and a fuel cell including a hydrogen input. The largest number of the floating platforms (6) is provided with PV panels (3) and at least one of the floating platforms (6) is provided with the electrolyzer and/or the fuel cell. The electrolyzer is electrically connectable to the PV panels (3) and the hydrogen output and/or the hydrogen input is fluidly connectable to the internal chamber (9) of the floating member (8) of the at least one platform (6).

WATER-EFFICIENT METHOD OF STORING HYDROGEN USING A BICARBONATE/FORMATE BASED REACTION SYSTEM

NºPublicación:  EP4656590A1 03/12/2025
Solicitante: 
AKROS ENERGY GMBH [DE]
AKROS Energy GmbH
EP_4656590_A1

Resumen de: EP4656590A1

The present invention relates to a water-efficient method of storing hydrogen using a bicarbonate/formate-based aqueous reaction system, wherein the method comprises:(A) reducing aqueous bicarbonate using hydrogen to form formate and water,(B) at least partially separating water from the aqueous reaction system to provide water and concentrated salt components comprising formate, and(C) using the water provided in step (B) to form hydrogen for use in step (A) and/or to dissolve concentrated salt components comprising bicarbonate to provide aqueous bicarbonate for use in step (A).

A FLOATING HYDROGEN PRODUCTION PLANT AND AN OFFSHORE HYDROGEN PRODUCTION SYSTEM

NºPublicación:  EP4656771A1 03/12/2025
Solicitante: 
SOLARDUCK HOLDING B V [NL]
SolarDuck Holding B.V
EP_4656771_PA

Resumen de: EP4656771A1

A floating hydrogen production plant (2) comprises a plurality of interconnected floating platforms (6) which are movable with respect to each other. Each floating platform (6) comprises a floating member (7). The floating member (7) of at least one floating platform (6) has an internal chamber (8) for storing hydrogen. Each of the floating platforms (6) is provided with a plurality of hydrogen production devices (3) for producing hydrogen by electrolysis of water in the ambient air through solar energy. The hydrogen production devices (3) have respective hydrogen ports which are fluidly connectable to the internal chamber (8) of the floating member (7) of the at least one floating platform (6).

METHOD AND PLANT FOR OBTAINING A HYDROGEN-CONTAINING PRODUCT

NºPublicación:  EP4656592A1 03/12/2025
Solicitante: 
LINDE GMBH [DE]
SELAS LINDE GMBH [DE]
Linde GmbH,
Selas-Linde GmbH
EP_4656592_PA

Resumen de: EP4656592A1

Die Erfindung betrifft ein Verfahren sowie eine Anlage (100) zur Herstellung eines Wasserstoff enthaltenden Produkts, wobei Ammoniak (1) unter Erhalt eines Ammoniakeinsatzes (2) einer Vorbehandlung (10) unterworfen und der Ammoniakeinsatz (2) in einem beheizten Ammoniakcracker (20) zu einem Ammoniak sowie Wasserstoff und Stickstoff enthaltenden Spaltgas (3) umgesetzt wird, wobei zur Beheizung des Ammoniakcrackers (20) ein schwefelfreies Brenngas unter Bildung eines wasserhaltigen Rauchgases (4a) verfeuert wird. Kennzeichnend hierbei ist, dass zumindest ein Teil des wasserhaltigen Rauchgases in der Vorbehandlung (10) gegen Ammoniak bis unter den Taupunkt abgekühlt wird, wobei kondensiertes Wasser sowie angewärmtes Ammoniak erhalten werden.

具有可变数量的活性电解电池的电解槽

NºPublicación:  CN121057844A 02/12/2025
Solicitante: 
氢气波有限公司
CN_121057844_PA

Resumen de: AU2024222987A1

A system, comprising: an electrolyzer having a plurality of electrolysis cells arranged in a cell stack, wherein the electrolysis cells are electrically connected in series and grouped into two or more cell groups, each cell group having an electrical contact at either end; an electrical circuit having one or more switches, each switch coupled between the electrical contacts of a respective one of the cell groups and configured to selectively disconnect the cell group from the cell stack by electrically bypassing the cell group via a lower resistance path, to thereby vary the number of active electrolysis cells in the cell stack; and a controller configured to determine the number of active electrolysis cells based on a variable amount of direct current (DC) electrical energy supplied to the cell stack by an electrical energy source, and to control the one or more switches based on the determination.

アンモニアの接触分解のためのプロセス

NºPublicación:  JP2025538901A 02/12/2025
Solicitante: 
ジョンソン、マッセイ、パブリック、リミテッド、カンパニー
JP_2025538901_PA

Resumen de: CN120344485A

The present invention relates to the field of hydrogen production from catalytic cracking of ammonia. The present invention comprises a primary cracking path comprising one or more catalyst-containing reaction tubes disposed within a roasting-type ammonia cracking reactor; and a parallel cleavage path comprising one or more secondary ammonia cleavage reactors arranged in succession and fluidly connected to each other. The invention can be used for producing hydrogen from ammonia.

Electrode for gaseous evolution in electrolytic process

NºPublicación:  IL324185A 01/12/2025
Solicitante: 
IND DE NORA S P A [IT]
INDUSTRIE DE NORA S.P.A
IL_324185_A

Resumen de: AU2024263112A1

The present invention relates to an electrode and in particular to an electrode suitable for gas evolution comprising a metal substrate and a catalytic coating. Such electrode can be used as an anode for the development of oxygen in electrolytic processes such as, for example, in the alkaline electrolysis of water.

COMPOSITE FOR ELECTROCATALYSIS AND PREPARATION METHOD THEROF

NºPublicación:  CA3273968A1 29/11/2025
Solicitante: 
HYDROLYZER DOO [RS]
Hydrolyzer DOO
US_2025354279_PA

Resumen de: CA3273968A1

5 10 15 20 25 30 35 Abstract The present invention relates to a method of preparing a composite material, in particular one useful as a catalyst in an electrolytic hydrogen evolution reaction and/or the oxygen evolution reaction and/or urea oxidation-assisted water electrolysis. Provided is a method of preparing a composite material, the method comprising the steps of: (i) electrochemically depositing material onto a substrate from a deposition solution comprising a nickel (II) salt and graphene oxide, to obtain a nickel-reduced graphene oxide composite material comprising nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate; (ii) after step (i), placing the substrate, having the nickel-reduced graphene oxide composite deposited thereon, in an alkaline solution along with a counter electrode; and (iii) after step (ii), partially electrochemically oxidising the nickel, to obtain a partially oxidised nickel-reduced graphene oxide composite material comprising partially oxidised nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate. The composite of the invention demonstrates high catalytic activity for electrolytic hydrogen production under alkaline water electrolysis conditions (for example, a hydrogen evolution current of up to 500 mA cm-2 at -1.35 V against a Reversible Hydrogen Electrode). High activity is demonstrated even when the substrate (on which the composite is deposited)

SYSTEM AND METHOD FOR STABILIZING THE OPERATION OF FACILITIES USING HYDROGEN PRODUCED BY LOW CARBON SOURCES

NºPublicación:  CA3273333A1 29/11/2025
Solicitante: 
KELLOGG BROWN & ROOT LLC [US]
KELLOGG BROWN & ROOT LLC
KR_20250163830_PA

Resumen de: AU2025203497A1

A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit 5 for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating 10 target hydrogen flows. A system and a method for stabilizing hydrogen flow to a downstream process in a 5 facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream 10 process, and controlling the operation of the downstream process based on the operating target hydrogen flows. ay a y

PROCESS FOR PROVIDING SYNTHESIS GAS AND FOR PRODUCING METHANOL

NºPublicación:  CA3249699A1 29/11/2025
Solicitante: 
LAIR LIQUIDE SA POUR LETUDE ET LEXPLOITATION DES PROCEDES GEORGES CLAUDE [FR]
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
CN_119954097_PA

Resumen de: CA3249699A1

The present invention proposes a process for producing synthesis gas, in particular synthesis gas for methanol synthesis. The process comprises the steps of providing a sulfur-containing hydrocarbon stream; providing an electrolytically produced hydrogen stream; supplying a portion of the electrolytically produced hydrogen stream to at least a portion of the sulfur-containing hydrocarbon stream to obtain a hydrogen-enriched sulfur-containing hydrocarbon stream; desulfurizing the stream obtained according to step (c) in a hydrodesulfurization unit (HDS unit) (12) to obtain a sulfur-free hydrocarbon stream; supplying a portion of the electrolytically produced hydrogen stream to at least a portion of the stream obtained according to step (d) to obtain a hydrogen-enriched sulfur-free hydrocarbon stream and converting at least a portion of the stream obtained according to step (e) into a synthesis gas stream in the presence of oxygen as oxidant in a reforming step.

PROCESS AND APPARATUS FOR CRACKING AMMONIA

Nº publicación: CA3268521A1 29/11/2025

Solicitante:

AIR PRODUCTS AND CHEMICALS INC [US]
AIR PRODUCTS AND CHEMICALS, INC

JP_2025146746_PA

Resumen de: CA3268521A1

In a process in which ammonia is cracked to form a hydrogen gas product and an offgas comprising nitrogen gas, residual hydrogen gas and residual ammonia gas, residual ammonia is recovered from the offgas from the hydrogen recovery process by partial condensation and phase separation, and hydrogen is recovered from the resultant ammonia-lean offgas by partial condensation and phase separation. The recovered ammonia may be recycled the cracking process and the recovered hydrogen may be recycled to the hydrogen recovery process to improve hydrogen recovery from the cracked gas. Overall hydrogen recovery from the ammonia may thereby be increased to over 99%.

traducir