Resumen de: WO2025180768A1
The invention relates to a method for starting a kite system (23), wherein the kite system (23) comprises a kite (14) and a gondola (25), and the gondola (25) is connected to the kite (14) via a line tree (24). The kite system (23) is coupled to a base station (16) via a traction cable (15). In an intermediate phase (28) of a starting process, a guide line (29) extends between the freely flying kite system (23) and the base station (16). In the method, the kite system (23) is controlled along a flight path such that the traction cable (23) is guided in a lateral direction (42) with respect to the wind direction (W) until the guide line (29) rests against the traction cable (15), the guide line (29) is moved until the guide line (29) lies in a guide line receiving area (55, 56) of the base station (16), said receiving area adjoining the traction cable (15), and the distal portion (32) of the guide line (29) is separated from the proximal portion (31) of the guide line (29). The invention also relates to a control unit for a kite device and to a kite device.
Resumen de: WO2025179980A1
A variable-frequency pendulum-type damping device, a floating foundation, a wind turbine generator, and an adjustment method. The variable-frequency pendulum-type damping device (7) comprises a base (71), a swing arm (73), a pendulum bob assembly (78) and a pumping component. The swing arm (73) is provided with a first end part and a second end part, the first end part is connected to the base (71), and the second end part of the swing arm (73) can swing relative to the base (71). The pendulum bob assembly (78) is connected to the second end part of the swing arm (73) and is provided with a chamber, and at least part of the pendulum bob assembly (78) is located below a liquid level (8). The pumping component is connected to the chamber, and is used for pumping a medium into the chamber or pumping out the medium in the chamber.
Resumen de: WO2025051591A1
The present invention relates to a semi-submersible floating platform (1) for a wind turbine (50). The platform comprises: three columns each having an axis, the columns comprising a primary column (10 )adapted to support a wind turbine, and two secondary columns (30a, 30b) wherein each one of the three columns is connected to the other two columns by cross members (15a, 15b, 35) in a triangular arrangement. Further, the cross member between the secondary columns (35) incorporates ballast and each of the cross members (15a, 15b) connecting to the primary column incorporate buoyancy. The primary column (10) has a larger displacement than either of the two secondary columns (30a, 30b) and the cross member (35) extending between the secondary columns has a smaller displacement than the cross members (15a, 15b) connected to the primary column (10).
Resumen de: US2025214680A1
A deployment device is provided for use in deploying an offshore renewable energy system mounting platform to a submerged operating configuration. The deployment device has a body portion including a platform engaging portion, the platform engaging portion arranged to fixably engage a corresponding portion of an offshore renewable energy system mounting platform, a mooring line tensioning member coupled to the body portion, in which the platform engaging portion is arranged to disengage from the platform. In use, when the platform engaging portion is engaged with the platform, the mooring line tensioning member applies a tensioning force to at least one mooring line along a plane substantially perpendicular to the base of the platform, in which under the tensioning force, the body portion is arranged to move relative to the at least one mooring line from a first undeployed position to a second deployed position.
Resumen de: CN223279290U
The utility model discloses a floating platform structure of an offshore wind driven generator, and mainly relates to a floating platform of a wind driven generator. Comprising an adjusting device, the adjusting device comprises an assembling plate, the assembling plate is fixedly connected with a floating plate, one inner wall of the assembling plate is movably connected with wind power generation equipment, the other inner wall of the assembling plate is fixedly connected with two connecting rods, the arc surfaces of the connecting rods are rotationally connected with adjusting blocks, and the adjusting blocks are fixedly connected with the floating plate. And the two ends of the arc surface of the connecting rod are slidably connected with coil springs, the two ends of each coil spring are fixedly connected with the adjusting block and one side of the inner wall of the assembling plate correspondingly, and a sliding rod slidably penetrates through the inner wall of the adjusting block. The adjusting device has the advantages that when the wind power generation equipment is installed on the floating plate, the wind power generation equipment can be installed through the adjusting device, the installation method of installing the wind power generation equipment through the adjusting device is fast, the speed of installing the wind power generation equipment by installation workers can be increased, and the installation time is saved.
Resumen de: AU2024233248A1
A method for the mass production of floats (2) for offshore wind turbines each consisting of the assembly of two to six unit mega-blocks (B-1, B-2) made of steel, the method comprising, in succession, manufacturing mega-blocks on a dedicated construction zone, transporting the mega-blocks produced by the construction zone by sea and storing them in storage zones (Z-1, Z-2) of a production zone (10) distinct from the construction zone, the same mega-blocks being stored in one and the same storage zone, and finally mass-production of floats, this comprising, for each float, a step of preparing the mega-blocks, a step of assembling and primary-welding of the mega-blocks at an assembly and primary-welding zone (Z-3) distinct from the storage zones and adjacent thereto, followed by a step of final-welding of the mega-blocks at a final-welding zone (Z-4), followed by a step of completing the float at a completion zone (Z-5), the float mega-blocks and the floats in the process of being manufactured being moved between the different manufacturing zones using translational movements.
Resumen de: WO2025178634A1
Tension-leg platforms for supporting wind turbines are augmented with surge plates. The surge plates increase the amount of water that is displaced when a tension-leg platform is accelerated horizontally, which reduces wave induced accelerations. The surge plates are mounted to the deepest parts of the submerged structure of each platform to minimize wave loading.
Resumen de: GB2639174A
A method of constructing a floatable foundation 100 for a wind turbine generator, the method comprising constructing a base 101 having a tower interface 2 at a land-based construction site 102; receiving a first part 1a of a wind turbine tower 1 at the land based site, the first part having a first bolted flange 3a or weld interface and a base interface 4; with the base located at the land-based construction site, connecting the base interface and tower interfaces to fix the first part to the base; moving the base into a floating state; and mounting a second part 1b of the wind turbine tower, the second part having a second bolted flange 3b or weld interface configured to interface with the first bolted flange 3a or weld interface, to the first part by connecting the first and second bolted flanges or weld interfaces.
Resumen de: US2025269938A1
Tension-leg platforms for supporting wind turbines are augmented with surge plates. The surge plates increase the amount of water that is displaced when a tension-leg platform is accelerated horizontally, which reduces wave induced accelerations. The surge plates are mounted to the deepest parts of the submerged structure of each platform to minimize wave loading.
Resumen de: WO2025176883A1
A floatable foundation (100) for a wind turbine generator comprising a central column structure (10, 11, 12); three outer column members (20, 21, 22), each being a polygonal prism with rectangular side wall panels (22x); three horizontal pontoon members (30, 31, 32) and three horizontal beam members (40, 41, 42) fixed between the central column structure (10, 11, 12) and the outer column members (20, 21, 22), each pontoon member (30, 31, 32) and each beam member (40, 41, 42) being a box beam with four flat panels; and inner corner supports (70), each inner corner support (70) comprising a rectangular plate (71) fixed to the rectangular side wall panel (22x) of the outer column member (20, 21, 22) and to the pontoon or beam member (30, 31, 32; 40, 41, 42).
Resumen de: US2025269940A1
The present application discloses a floating wind power generation platform and a floating wind power generation system. The floating wind power generation platform includes a plurality of hulls and at least one transverse connection structure; where the plurality of hulls are spaced apart along a horizontal direction, two ends of each transverse connection structure are connected to two adjacent hulls respectively, a support frame extends upwards from the top of each hull, adjacent support frames are symmetrically provided in directions away from their respective centers of gravity, and the support frame has an installation position for installation of a wind turbine.
Resumen de: EP4607773A1
A wind turbine generator parallel-stage intermediate-speed shaft train connecting structure, wherein a sun shaft and a hollow shaft are connected together by means of rigid connection. A bearing for the hollow shaft is arranged on a box body on one side of a generator. Floating shift of the sun shaft during the operation of the generator is absorbed by the bearing. Because interference splines are used to achieve the rigid connection between the sun shaft and the hollow shaft, there is no need to provide lubrication and cooling for the splines, and the structure has low manufacturing costs and the structure is simple. Further provided is a wind turbine generator parallel-stage intermediate-speed shaft train, having the advantages of simple structure and low maintenance costs.
Resumen de: DK202200941A1
After assembling a floating offshore wind turbine construction (1), which includes the wind turbine (2) as well as the support structure (3), it is transported to a platform (16) at a head of an inclined slipway (23) that extends from a level above a surface (4) of the water to a position under the surface (4) of the water. The construction (1) is launched by moving it from the platform (16) down along the slipway (23) into the water until the assembled floating offshore wind turbine (1) is lifted off the slipway (23) by the buoyancy on the floating support structure (3).
Resumen de: TW202430774A
A method of monitoring a mooring system (10) of a floating offshore installation, FOI, (100) that is moored by the mooring system (10) is provided. The method comprises obtaining parameters related to a position of the FOI, wherein the parameters include at least mooring system parameters that are indicative of a region (15) within which a position of the FOI is expected to lie. The method further includes obtaining position measurements of an actual position (11) of the FOI, and deriving, from the obtained parameters and from the position measurements of the FOI, a state of the mooring system (10) of the FOI.
Resumen de: EP4607059A1
A wind turbine generator parallel-stage intermediate-speed shaft train connecting structure, comprising a sun shaft (1), a downstream shaft portion, and a high-speed gear (4), wherein the high-speed gear (4) is arranged outside of the downstream shaft portion in an axial direction, an axial position of the downstream shaft portion is fixed relative to a wind turbine generator box (9), and the sun shaft (1) is connected to the high-speed gear (4) by a thin-walled flange ring to allow the thin-walled flange ring to absorb a floating shift of the sun shaft (1) by means of elastic deformation.
Resumen de: CN223266994U
The utility model relates to the field of offshore floating platform equipment, and particularly discloses a triangular structure floating platform which comprises a floating platform, the floating platform comprises a bent part and two extension parts, and the two extension parts are symmetrically arranged on the bent part through symmetric axes; comprising three buoys, the three buoys are all arranged on the top of the floating platform, one buoy is arranged on the bent part, and the other two buoys are symmetrically arranged at the ends, away from the bent part, of the two extension parts through symmetric axes. The offshore floating platform has the effect that the problem that an existing offshore floating platform is inconvenient to assemble is solved.
Resumen de: WO2025172752A1
The present invention relates to a vertical floating wind propulsion system that is able to increase the concentration of dissolved oxygen in bodies of water while reducing the concentration of contaminating organic matter under the action of biofilms of anaerobic and aerobic microorganisms, which transform or consume said organic matter in their metabolic processes. The present invention consists of a wind propulsion system, a grooved floating buoy, a system of internal and external culture media, a duct, a sediment collecting base and an anchor. The wind propulsion system captures wind energy to generate rotational movement which is transferred by means of a shaft to a system of thruster propellers, which are arranged inside the duct. As the water rises by hydraulic displacement, organic sediments and microorganisms that can attach to the internal and external culture media are carried with it, forming biofilms. These communities of microorganisms consume excess organic matter in their metabolic processes, reducing the concentration thereof in water. Furthermore, the water that is displaced to the surface can be oxygenated in a more efficient way when it comes in contact with atmospheric oxygen. The system can be located in critical areas in bodies of water and is kept in situ by means of a concrete anchor. The system is designed as a device that neither consumes electricity nor generates polluting emissions as it is wind-powered.
Resumen de: AU2024223226A1
The present invention relates to an offshore floating wind turbine foundation comprising at least two outer members arranged around a tower comprising a rotor- nacelle assembly with blades, wherein a number of pair of beams connect the center buoy and said at least two outer members, a pair of beams tapers from the tower towards each of said at least two outer members.
Resumen de: CN223237848U
The utility model relates to the field of floating type fan floating platforms, in particular to a steel-concrete composite structure floating type platform connecting structure which comprises a connecting piece used for fixedly connecting a plurality of concrete floating body shell sections into a concrete floating body shell section module. The cylinder section module connecting component is used for being fixedly connected with the end part of a concrete floating body cylinder section module; and the steel structure module connecting components are used for being fixedly connected with the ends of the steel structure modules, and the steel structure module connecting components are fixedly connected with the shell section module connecting components. According to the integrated floating platform, the construction process can be simplified, the construction cost of the integrated floating platform can be reduced, and improvement of the floating type draught fan floating platform is facilitated.
Resumen de: CN223241559U
The utility model discloses a self-moving type offshore floating type wind generating set, which comprises a fan, a floating type foundation and an ocean current generator, the fan is fixed on a mounting platform above the water surface of the floating type foundation, and the ocean current generator is fixed on the part below the water surface of the floating type foundation. Reverse thrust generated after the ocean current generator is powered on can be used for driving the floating type foundation to move automatically. The utility model does not depend on towing to a certain extent, so that the transportation cost is effectively reduced.
Resumen de: CN223241037U
The utility model discloses a movable tool for internal construction of a floating wind power concrete foundation prefabricated part, which is characterized in that three cavities are formed in the floating wind power concrete foundation prefabricated part and are respectively a middle cavity, a left cavity and a right cavity, and the left cavity and the right cavity are positioned on two sides of the middle cavity; the moving tool comprises a first moving ladder and two second moving ladders, the first moving ladder is arranged in the middle cavity and can move in the middle cavity in the front-back direction, and the two second moving ladders are symmetrically arranged in the left side cavity and the right side cavity correspondingly; and the two side cavities can move in the front-back direction in the corresponding side cavities. The utility model can effectively solve the problems of long internal construction period, large workload and the like of the floating wind power concrete foundation prefabricated member.
Resumen de: CN223241560U
The utility model discloses a semi-submersible floating type draught fan foundation which comprises three supporting stand columns, two middle stand columns, a truss structure, two upwind tower barrels and two downwind tower barrels. The three supporting stand columns are the upwind supporting stand column and the two downwind supporting stand columns respectively, the two middle stand columns are arranged between the upwind supporting stand column and the two downwind supporting stand columns respectively, and each middle stand column is connected with the adjacent upwind supporting stand column and the adjacent downwind supporting stand column through a truss structure. The bottom ends of the two upwind tower cylinders are connected with the top ends of the two middle stand columns respectively, the bottom ends of the two downwind tower cylinders are connected with the top ends of the two downwind supporting stand columns respectively, and the top ends of the two upwind tower cylinders and the top ends of the two downwind tower cylinders intersect at one point and are connected. On the premise that the requirements for stability and movement performance of the floating body are met, the steel consumption of the foundation can be effectively reduced, and the cost of the foundation structure is reduced.
Resumen de: WO2025169781A1
Provided are a turning multi-layer welding method and a turning multi-layer welded joint in a large structure such as a floating offshore wind power generation facility. The present invention provides a turning multi-layer welding method in which a bracket 6 for reinforcing a standing plate 5 provided on a steel plate 4 is welded to the steel plate 4 and the standing plate 5, the welding method including forming a first welding bead 1 in multiple layers along the short side of a rectangular abutment surface 6a where the bracket 6 abuts the steel plate 4, subsequently placing a second welding bead 2 and a third welding bead 3 on the end section of the first welding bead 1 along the long side of the rectangular abutment surface 6a, and furthermore stretching the second welding bead 2 and the third welding bead 3 onto the steel plate 4 to form said welding beads in multiple layers.
Resumen de: WO2025168348A1
A method of constructing a floatable foundation (100) for a wind turbine generator, the method comprising: providing three column sections (10a-d) at a foundation construction site (S); providing three pontoon sections (11a-c) at the foundation construction site (S); resting the three columns sections (10a-d) on a plurality of first supports (1) at the construction site (S); resting the three pontoon sections (11a-c) on a plurality of second supports (2) at the construction site (S); providing three brace sections (12a-c) at the foundation construction site (S); and fixing each of the three pontoon sections (11a-c) between different pairs of column sections (10a-d) and fixing each of the three brace sections (12a-c) between different pairs of column sections (10a-d).
Nº publicación: WO2025169578A1 14/08/2025
Solicitante:
AISIN CORP [JP]
\u682A\u5F0F\u4F1A\u793E\u30A2\u30A4\u30B7\u30F3
Resumen de: WO2025169578A1
A power generation device (100) comprises: a floating body (1); a connection shaft (2) which is disposed on a first axial center (X1) along the horizontal direction; a pair of rotation bodies (3) which are disposed separately on both sides of the floating body (1) in the axial direction (L) along the first axial center (X1), and which are supported rotatably about the first axial center (X1) with respect to the floating body (1); and a power generation unit which is provided with an input member disposed on the first axial center (X1), and which performs power generation by using a rotation driving force of the input member. Each of the pair of rotation bodies (3) is configured to rotate by receiving the flow of a fluid along the direction orthogonal to the first axial center (X1). The power generation unit is disposed inside the floating body (1). The connection shaft (2) is disposed to penetrate the floating body (1) in the axial direction (L), and connects the pair of rotation bodies (3) and the input member so as to integrally rotate the same.