Resumen de: CN114930589A
A fuel cell cell is provided that includes an anode configured to receive an anode process gas and allow the anode process gas to pass therethrough, a cathode configured to receive a cathode process gas and allow the cathode process gas to pass therethrough, and an electrolyte matrix layer separating the anode and the cathode. One of the anode and the cathode has an extended edge sealing chamber, and the fuel cell cells are configured to receive an anode process gas and a cathode process gas in a direction substantially perpendicular to each other, and the protruding edge sealing chamber is configured to allow the anode process gas and the cathode process gas to pass through the anode and the cathode in substantially parallel flow paths.
Resumen de: CN120485810A
本发明属于火力发电技术领域,涉及一种煤电机组灵活性调节制氨系统及方法。本发明系统包括锅炉本体和燃料电池;所述锅炉本体和汽轮机连接;所述汽轮机和发电机连接;所述发电机和负荷控制中心第一电能接收入口连接;所述燃料电池和负荷控制中心第二电能接收入口连接;所述负荷控制中心第一电能出口和电网电连接;所述电网第一负荷控制出口和负荷控制中心电连接;所述负荷控制中心第二负荷控制出口和锅炉本体电连接;所述负荷控制中心第三负荷控制出口和燃料电池电连接。本发明不仅实现了机组灵活调峰的需求,还为机组烟气脱硝设备提供了还原剂。
Resumen de: US2025260033A1
A fuel cell system includes: a plurality of fuel cell stacks; an oxidizing gas supply unit including a turbo compressor that supplies an oxidizing gas to each of the fuel cell stacks; a cooling unit that cools each of the fuel cell stacks; and a control device that determines, according to the requested output, a requested number of fuel cell stacks to be operated out of the fuel cell stacks, a target supply pressure of the oxidizing gas and a target supply flow rate of the oxidizing gas that are to be sent as a command to the oxidizing gas supply unit, and a target cooling temperature of the fuel cell stacks that is to be sent as a command to the cooling unit. The control device reduces the target cooling temperature when reducing the requested number of fuel cell stacks to be operated.
Resumen de: CN120483158A
本发明公开了一种功能化少层MXene及制备方法和高电导率质子交换膜,所述制备方法包括:刻蚀处理、碱化处理、超声处理、旋蒸浓缩以及可选的改性处理,得到功能化少层MXene(5层以下)浓缩液,并通过所述功能化少层MXene和质子化聚合物的复合制备得到高电导率质子交换膜f‑MXene/PA‑PBI,很好地改善了PA‑PBI膜的力学性能、质子导电性能,尤其是低温时的质子导电能力。本发明利用功能化少层MXene的层间插层水在高温时的高稳定性,可以使其高温高电导率质子交换膜燃料电池电堆实现多次高低温启停切换,极大方便了PA‑PBI高温质子交换膜燃料电池的实际应用。
Resumen de: CN120487376A
本发明公开了一种耦合二氧化碳原位捕捉并利用的甲醇燃料船舶混合动力系统,包括SOFC/GT系统、超临界二氧化碳循环发电系统、有机朗肯循环发电系统和二氧化碳原位利用系统;SOFC/GT系统中燃气轮机的排气作为热源依次用于加热超临界二氧化碳循环发电系统和有机朗肯循环发电系统的循环工质后进入二氧化碳原位利用系统;二氧化碳原位利用系统接收的排气通过冷凝器冷凝分离H2O后进入多孔固体电解槽的阴极,阴极包括KOH溶液和阴离子交换膜,阳极包括水和阳离子交换膜,电极催化剂为氧化铋,阳极排气进入SOFC/GT系统,中间隔层排出的甲酸进入甲酸储罐。本发明实现了在甲醇燃料船舶上原位捕捉废气中二氧化碳生成高附加值产物,并使动力系统能量获得综合利用。
Resumen de: CN120497383A
一种固体氧化物燃料电池热电联供装置及其控制方法,包括:燃料重整单元、高温换热单元、电堆模组单元、余热利用单元和、核心控制单元和交直流变换单元;燃料重整单元用于基于甲醇和水进行重整反应生成氢气并输送给电堆模组单元;电堆模组单元用于基于氢气与空气反应生成电能和热量;高温换热单元用于通过余热系统回收多余的热量发送给余热利用单元;余热利用单元用于基于多余的热量生成热能和冷能;交直流变换单元用于将直流电转换为交流电,并输出功率;核心控制单元用于进行运行模式判断,并根据用户需求进行升降载操作;通过计及健康状态的核心控制单元控制和跟踪设备运行状态,保障了固体氧化物燃料电池装置多种能源的可靠供能。
Resumen de: CN120497368A
本发明涉及氢燃料电池技术领域,具体是涉及一种集成式氢燃料电池储氢供氢系统;包括:固定传导模块,内设有供低压氢气导入的吸入室,吸入室内部空间通过隔板被分割成第一仓室和第二仓室;活动传导模块,同轴活动设置于所述固定传导模块的导出端;喷射模块,同轴设置于所述固定传导模块的导入端处,所述喷射模块设有能够将氢气高压导出的喷头且所述喷头能够沿着所述固定传导模块的轴线轴向移动;压力监测模块,设置于所述喷头进气端,用于对喷头的喷射压力进行检测;本发明不仅能够根据不同的氢气传输状态自调节引射压力且能够对引射的氢气中水分子进行有效去除。
Resumen de: CN120485796A
本发明公开了一种燃料电池动态工况馈电回收及性能测试系统,该系统包括燃料电池、电解槽及电力补充系统。将电解槽作为燃料电池测试过程中的负载,既能够有效利用燃料电池产生的馈电,又能够节约测试用氢,可以节约测试成本。同时,电解槽为质子交换膜电解槽,具备秒级的响应能力,能够快速适应燃料电池的电流波动变化,确保在CLTC等实际波动工况下维持稳定运行。这一优势使得本系统能够满足车用燃料电池对高效能和灵活性的严格要求,尤其在电流波动较大的情况下,能够提供稳定的氢气供给,提升测试的准确性和可靠性。
Resumen de: CN120497380A
本发明公开一种燃料电池堆多尺度耦合热质输运的气体分配特性预测方法,涉及燃料电池电堆分配技术领域,该方法包括:获取燃料电池堆的流动网络,并将燃料电池堆任意一侧的流动区域网络划分为燃料电堆进口分配单元、燃料电堆出口汇流单元和各个单层电池内的流动单元;构建多尺度下反应气体分配及热质输运动态耦合模型,分别建立燃料电堆进口分配单元和反应气体沿各个单层电池内流动单元的输入参数与输出参数之间的函数关系,确定出分配主管中各流体单元的进出口流体参数、各个单层电池的进出口流体参数和各层电池的出口压力;进而对燃料电池堆中各个单层电池内的反应气体进行分配,极大地提高电池堆特别是阴极侧空气的整体性能。
Resumen de: CN120497396A
本发明公开了一种开放式钛合金空冷电堆的改进结构,属于空冷电堆领域。包括有壳体,所述壳体的右侧设置有散热机构;所述壳体的左侧设置有过滤机构;所述壳体的内侧卡合安装有电池堆本体,所述壳体的右侧开设有多个定位孔,所述壳体的外侧壁右方通过转轴转动连接有弧形板,所述弧形板的右侧固定连接有多个挤压块;所述散热机构包括有安装板;拆卸时,先转动弧形板,带动挤压块向右挤压楔形受压块,使得定位柱从定位孔内部脱离,接着另一只手持安装板转动,使得缺口与L形限位板对齐,此时可以向右移动安装板,将风机一同拆卸,达到便于更换风机的效果,同时也便于出去电池堆本体进行更换。
Resumen de: CN120497374A
本发明公开了一种燃料电池BOP水冷子系统测试装置,包括在循环水路上设置的水箱、待测水泵、循环水泵、控温结构、待测设备、待测加热器、流量控制结构、真空抽取结构,其中待测水泵和循环水泵并联设置,待测设备与待测加热器并联设置;控温结构用于控制循环水路的温度,流量控制结构用于控制循环水路的流量,真空抽取结构将循环水路抽取至真空状态。本发明的优点在于,实现了多个燃料电池BOP零部件组合测试以及零部件之间的性能匹配测试以及水冷子系统级别匹配验证,对于燃料电池零部件出厂测试以及选型提供了有利平台。
Resumen de: CN120497357A
本发明公开了一种热稳定型气体扩散层材料及燃料电池,涉及燃料电池领域。本发明在制备热稳定型气体扩散层材料时,将短切聚丙烯腈碳纤维抄纸后固化,再进行氧化接枝3‑氨基噻吩制得改性碳纸基层;将单层氧化石墨烯纳米片、6‑氨基‑2‑巯基苯并噻唑和3‑氨乙基噻吩反应制得改性单层氧化石墨烯纳米片;将聚偏氟乙烯粉、3‑烯丙基噻吩和单端乙烯基硅油反应后配制得到改性聚偏氟乙烯乳液;将改性单层氧化石墨烯纳米片、改性聚偏氟乙烯乳液和异丙醇混匀喷涂在改性碳纸基层上,再与3,4‑乙撑二氧噻吩反应制得热稳定型气体扩散层材料。本发明制备的热稳定型气体扩散层材料具有优良的孔隙率、热稳定性、导电性和耐腐蚀性。
Resumen de: CN120481800A
本发明公开了一种车用燃料电池监控方法、系统和装置,该方法通过数据采集子系统采集电池运行数据,存储处理后用于构建1D‑CNN和LSTM模型,进而对实时数据深度分析,依据结果预警和控制。改进的模型提升特征提取和分析能力,模糊逻辑控制等手段优化控制与预警。监控系统含数据采集汇聚、存储预处理等多个单元,协同实现数据高效处理与传输。监控装置集成多种功能模块,从硬件层面保障稳定运行。该发明可精准监控车用燃料电池运行状态,有效提升电池系统的安全与可靠性,延长燃料电池使用寿命,降低车辆停运风险和维修成本,为燃料电池车辆商业化运营提供坚实技术支撑。
Resumen de: FR3159261A1
L’invention porte sur une plaque bipolaire comportant des tôles supérieure et inférieure (10, 20), ayant, le long de la zone active, une zone longitudinale intermédiaire (Zint) où se trouve une alternance longitudinale entre au moins une première région anti-court-circuit (Rsup) et au moins une deuxième région anti-court-circuit (Rinf). Dans la première région anti-court-circuit (Rsup), la tôle inférieure (20) présente : une pluralité de plots inférieurs (25), faisant saillie, suivant une direction opposée à la tôle supérieure (10), vis-à-vis d’un renfoncement intermédiaire inférieur (24) dans lesquels ils sont situés, et présentant des dimensions sensiblement égales suivant deux axes orthogonaux quelconques dans un plan parallèle à la plaque bipolaire ; et une absence de nervures transversales s’étendant dans la zone longitudinale intermédiaire (Zint) en joignant des nervures longitudinales inférieures interne (22i) et externe (22e). Figure pour l’abrégé : Fig.3B
Resumen de: FR3159260A1
L’invention porte sur une plaque bipolaire de cellule électrochimique, comportant des tôles supérieure et inférieure (10, 20), des premier et deuxième collecteurs (2, 3), dans laquelle, dans une première zone intermédiaire s’étendant entre les nervures supérieure (15) et inférieure (25) de premier collecteur d’une part et les nervures supérieure (12) et inférieure (22) externes d’autre part, la tôle conductrice supérieure (10) comporte un renfoncement supérieur (14) dit intermédiaire, et la tôle conductrice inférieure (20) comporte une nervure inférieure (24) dite intermédiaire, superposée et au contact du renfoncement supérieur intermédiaire (14). Figure pour l’abrégé : Fig.2B
Resumen de: FR3159259A1
L’invention porte sur une plaque bipolaire de cellule électrochimique, comportant des tôles supérieure et inférieure (10, 20) dont des nervures définissent, le long des circuits de distribution (7), une zone latérale de contournement (Zc) où se trouve une alternance longitudinale de première partie anti-court-circuit (P1sup) et de deuxième partie anti-court-circuit (P2inf), de sorte que : dans la première partie anti-court-circuit (P1sup), la tôle inférieure (20) comporte une succession longitudinale de nervures internes (25i), respectivement externes (25e), ayant une extrémité opposée fermée non raccordée à la nervure externe (22e), respectivement interne (22i) ;dans la deuxième partie anti-court-circuit (P2inf), la tôle supérieure (10) comporte une succession longitudinale de nervures internes (15i), respectivement externes (15e), ayant une extrémité opposée fermée non raccordée à la nervure externe (12e), respectivement interne (12i). Figure pour l’abrégé : Fig.6A
Resumen de: US2025257480A1
The following disclosure relates to substacks configured to form an electrochemical stack. A substack for an electrochemical stack includes a plurality of electrochemical cells, each electrochemical cell having a cathode flow field, an anode flow field, and a membrane positioned between the cathode flow field and the anode flow field. The substack also includes an anode unipolar plate and a cathode unipolar plate, wherein the plurality of electrochemical cells is positioned between the anode unipolar plate and the cathode unipolar plate. The substack is configured to be independently tested for one or more performance parameters prior to addition to the electrochemical stack. The substack is also configured to be added to the electrochemical stack including at least one additional substack following achieving a threshold test result for the one or more performance parameters being tested.
Resumen de: WO2025168366A1
The invention relates to a methanol reformer system (1) comprising: a methanol reformer (2); a waste heat utilisation system (3) having a first heat exchanger (4); a water recovery system (5) having a second heat exchanger (6) and a water separator (15); and a cooling water system (7) which is connected to the waste heat utilisation system (3) and the water recovery system (5), wherein an exhaust gas line (8) of the methanol reformer (2) is connected to an inlet (9) on a primary side (10) of the first heat exchanger (4), an outlet (11) on the primary side (10) of the first heat exchanger (4) is connected to an inlet (12) on a primary side (13) of the second heat exchanger (6), and an outlet (14) on the primary side (13) of the second heat exchanger (6) leads into the water separator (15). The invention also relates to a methanol reformer fuel cell system. The invention also relates to a method for recovering heat and water in a methanol reformer system (1).
Resumen de: US2025257490A1
An electrochemical cell active hydrogen capture and release system including a first zone having a target predetermined concentration of hydrogen c1 and housing: an electrical component, an adsorbing electrode including a hydrogen adsorbing material, a counter electrode separated from the adsorbing electrode, and an electric circuit connecting the adsorbing and counter electrodes to apply electrical bias configured to facilitate capture and release of hydrogen gas from the adsorbing electrode; and a second zone having a target predetermined concentration of hydrogen c2, c2 being greater than c1.
Resumen de: US2025260232A1
A method for operating a power system in the present disclosure includes the steps of planning an output of a fuel cell system in a second period, which is later than a first period, in such a way as to make up differences between actual values of power demand and actual values of an output of a solar power generation system in the first period, causing, if a sum of the output of the solar power generation system and the output of the fuel cell system is larger than the power demand, the storage battery system to store power, and causing, if the sum of the output of the solar power generation system and the output of the fuel cell system is smaller than the power demand, the storage battery system to discharge power in such a way as to meet the power demand.
Resumen de: US2025260234A1
The present disclosure is directed to a system that employs fuel cell-based power generation for decentralized data centers that perform large, processing intensive tasks, such as training processes for large artificial intelligence models. The system utilizes various modules, such as energy storage systems, load banks, and other types of loads, to supplement power output by the fuel cells, as well as store any excess power generated by the fuel cell systems. As a result, swings in the power output by the fuel cell systems are minimized and the life of the fuel cell systems may be extended.
Resumen de: US2025260039A1
A method of improving an interface between an electrode and an electrolyte of an electrochemical cell is disclosed. The method includes forming an electrolyte material on an electrode of an electrochemical cell. The electrolyte may include a perovskite material. The electrolyte material may be exposed to one or more of an acid solution, a plasma, thermal shock, and gamma radiation to increase the surface roughness of the electrolyte material. Additional methods, electrochemical cells, and systems are disclosed.
Resumen de: US2025260037A1
In accordance with at least one aspect of this disclosure, a system includes a hydrogen generator configured to decompose Alane to produce a flow of hydrogen and aluminum and a fuel cell fluidly connected to the hydrogen generator configured to receive the flow of hydrogen from the hydrogen generator and receive a flow of oxidizer to chemically generate electrical power and produce a flow of product water as a byproduct. The hydrogen generator is configured to receive the flow of product water to react with the aluminum and with Alane remaining in the hydrogen generator to generate an additional flow of hydrogen and heat, wherein the additional flow of hydrogen is provided to the fuel cell.
Resumen de: US2025260033A1
A fuel cell system includes: a plurality of fuel cell stacks; an oxidizing gas supply unit including a turbo compressor that supplies an oxidizing gas to each of the fuel cell stacks; a cooling unit that cools each of the fuel cell stacks; and a control device that determines, according to the requested output, a requested number of fuel cell stacks to be operated out of the fuel cell stacks, a target supply pressure of the oxidizing gas and a target supply flow rate of the oxidizing gas that are to be sent as a command to the oxidizing gas supply unit, and a target cooling temperature of the fuel cell stacks that is to be sent as a command to the cooling unit. The control device reduces the target cooling temperature when reducing the requested number of fuel cell stacks to be operated.
Nº publicación: US2025260032A1 14/08/2025
Solicitante:
HYUNDAI MOTOR COMPANY [KR]
KIA CORP [KR]
Hyundai Motor Company,
Kia Corporation
Resumen de: US2025260032A1
Disclosed is a multi-fuel cell system and control method thereof in which when a plurality of fuel cell units electrically connected to each other, each including a fuel cell, an air compressor, and a humidifier, is cold-started, a first fuel cell unit, one of the plurality of fuel cell units, generates power in a defrost mode, an air compressor of a second fuel cell unit, another fuel cell unit, is driven by providing the power generated by the first fuel cell unit to the second fuel cell unit, and the first fuel cell unit generates power in a heating mode when the defrosting of the first fuel cell unit is completed.