Resumen de: WO2026030458A1
A process of hydrogenating an unsaturated hydrocarbon is disclosed. The process comprises passing a hydrocarbon feed stream comprising toluene to a hydrogenation reactor. A hydrogen stream is passed to the hydrogenation reactor. In the hydrogenation reactor, the hydrocarbon feed stream is hydrogenated in the presence of hydrogen and a hydrogenation catalyst to produce a hydrogenated effluent stream comprising methylcyclohexane. The hydrogenated effluent stream is indirectly contacted with a water stream to produce a steam stream. The steam stream is taken from the hydrogenation reactor. In an electrolyzer, hydrogen is separated from the steam stream to produce the hydrogen stream which is passed to the hydrogenation reactor.
Resumen de: WO2026029709A1
The present disclosure broadly relates to a method of preparing a supported high-entropy oxide nanostructure The method may comprise the step of: irradiating, with a laser, a substrate coated with a hydrogel to form the high-entropy oxide nanostructure, wherein the hydrogel comprises at least five metal salts, a cross-linking agent, a carbonaceous substance and water to form a high-entropy oxide nanostructure. There is also disclosed herein a high- entropy oxide nanostructure produced by the method as well as the use of the high-entropy oxide nanostructure for forming hydrogen.
Resumen de: WO2026028848A1
In a hydrogen boiler (3), hydrogen gas and oxygen gas supplied from a water electrolysis device (2), which generates the hydrogen gas and the oxygen gas by electrolyzing water, are combusted in a combustion chamber of the hydrogen boiler (3), and a water pipe of the hydrogen boiler (3) is heated, thus generating water vapor.
Resumen de: WO2026027166A1
A frame assembly (Fr.Ass) comprising a frame (TF) configured to be integrated in a stack of frames of an electrolyzer, the frame comprising a central opening (CentOp), a first through opening (ln2, Out2), a top surface (Top) and a bottom surface (Bot) opposed to the top surface (Top), the frame further comprising an open channel (OpCh) on the bottom surface (Bot), the frame assembly comprising a bipolar plate (BP) formed from a polymer material, the bipolar plate being arranged so as to seal the open channel (OpChan), the bipolar plate being welded to the frame (TF).
Resumen de: WO2026027165A1
A frame assembly (Fr.Ass) comprising a frame (TF) configured to be integrated in a stack of frames of an electrolyzer, the frame comprising a central opening (CentOp), a first through opening (In2, Out2), a top surface (Top) and a bottom surface (Bot) opposed to the top surface (Top), the frame further comprising an open channel (OpCh) on the bottom surface (Bot), the frame assembly comprising a bipolar plate (BP) formed from a polymer material, the bipolar plate being arranged so as to seal the open channel (OpChan), the bipolar plate being welded to the frame (TF).
Resumen de: WO2026027472A1
A process or plant for the synthesis of methanol (MeOH). The process comprises: (a) passing a water-containing stream (3) through an electrolysis unit (4) to produce a cathode-side stream (5) comprising hydrogen (H2) and an anode-side stream (6) comprising oxygen (O2); (b) heat-exchanging said cathode-side stream (5) and optionally said anode-side stream (6) in one or more indirect heat exchanger(s) (7, 8, 32, 33) to obtain a cathode-side heat-exchanged stream (9) and optionally an anode-side heat-exchanged stream (10); (c) condensing said cathode-side heat-exchanged stream (9) to separate a liquid condensate product (11) and a syngas (12); said cathode-side stream (5) and/or said syngas (12) comprise carbon dioxide (CO2) and optional carbon monoxide (CO) added through a separate stream (2); (d) compressing said syngas (12) and then feeding compressed syngas (13) to a MeOH synthesis loop (14) wherein catalytic conversion of said compressed syngas (13) into MeOH is carried out under methanol synthesis conditions, thus obtaining a crude methanol stream (15); (e) distilling said crude methanol stream (15) in one or more distillation column(s) (16, 17) to give a refined MeOH product (22); wherein said one or more indirect heat exchanger(s) (7, 8, 32, 33) provide a heat input to said one or more distillation column(s) (16, 17), and/or to said MeOH synthesis loop (14), and/or to said electrolysis unit (4).
Resumen de: WO2026027476A1
A process for the synthesis of methanol (MeOH) comprising the following steps: (a) passing a water-containing stream (3) through an electrolysis unit (4) to produce a cathode-side stream (5) comprising hydrogen (H2) and an anode-side stream (6) comprising oxygen (O2); (b) heat-exchanging said cathode-side stream (5) and optionally said anode-side stream (6) in one or more indirect heat exchanger(s) (7, 8, 32, 33) to obtain a cathode-side heat-exchanged stream (9) and optionally an anode-side heat-exchanged stream (10); (c) condensing said cathode-side heat-exchanged stream (9) to separate a liquid condensate product (11) and a syngas (12); said cathode-side stream (5) and/or said syngas (12) comprise carbon dioxide and optional carbon monoxide added through a separate stream (2); (d) compressing said syngas (12) in a compressor (27, 28) and then feeding compressed syngas (13) to a MeOH synthesis loop (14) wherein catalytic conversion of said compressed syngas (13) into MeOH is carried out under methanol synthesis conditions, thus obtaining a crude methanol stream (15); (e) distilling said crude methanol stream (15) in one or more distillation column(s) (16, 17) to give a refined MeOH product (19, 22); (i) recycling as feed to the electrolysis unit (4) at least a portion of at least one of: (A) a portion (31) of said compressed syngas (13); and/or (B) a bottom water stream (20) of a distillation column (16, 17).
Resumen de: WO2026027698A1
The invention comprises an electrochemical cell stack unit (10) consisting of electrochemical cells, which can be used, for example, as a fuel cell unit for electrochemically generating electrical energy from hydrogen and/or as an electrolysis cell unit for generating hydrogen and oxygen from electrical energy.
Resumen de: EP4686717A1
A process or plant for the synthesis of methanol (MeOH). The process comprises:(a) passing a water-containing stream (3) through an electrolysis unit (4) to produce a cathode-side stream (5) comprising hydrogen (H<sub>2</sub>) and an anode-side stream (6) comprising oxygen (O<sub>2</sub>);(b) heat-exchanging said cathode-side stream (5) and optionally said anode-side stream (6) in one or more indirect heat exchanger(s) (7, 8, 32, 33) to obtain a cathode-side heat-exchanged stream (9) and optionally an anode-side heat-exchanged stream (10);(c) condensing said cathode-side heat-exchanged stream (9) to separate a liquid condensate product (11) and a syngas (12);said cathode-side stream (5) and/or said syngas (12) comprise carbon dioxide (CO<sub>2</sub>) and optional carbon monoxide (CO) added through a separate stream (2);(d) compressing said syngas (12) and then feeding compressed syngas (13) to a MeOH synthesis loop (14) wherein catalytic conversion of said compressed syngas (13) into MeOH is carried out under methanol synthesis conditions, thus obtaining a crude methanol stream (15);(e) distilling said crude methanol stream (15) in one or more distillation column(s) (16, 17) to give a refined MeOH product (22);wherein said one or more indirect heat exchanger(s) (7, 8, 32, 33) provide a heat input to said one or more distillation column(s) (16, 17), and/or to said MeOH synthesis loop (14), and/or to said electrolysis unit (4).
Resumen de: EP4686773A1
A frame assembly (Fr.Ass) comprising a frame (TF) configured to be integrated in a stack of frames of an electrolyzer, the frame comprising a central opening (CentOp), a first through opening (In<sub>2</sub>, Out<sub>2</sub>), a top surface (Top) and a bottom surface (Bot) opposed to the top surface (Top), the frame further comprising an open channel (OpCh) on the bottom surface (Bot), the frame assembly comprising a bipolar plate (BP) formed from a polymer material, the bipolar plate being arranged so as to seal the open channel (OpChan), the bipolar plate being welded to the frame (TF).
Resumen de: EP4686774A1
A frame assembly (Fr.Ass) comprising a frame (TF) configured to be integrated in a stack of frames of an electrolyzer, the frame comprising a central opening (CentOp), a first through opening (In<sub>2</sub> , Out<sub>2</sub> ), a top surface (Top) and a bottom surface (Bot) opposed to the top surface (Top), the frame further comprising an open channel (OpCh) on the bottom surface (Bot), the frame assembly comprising a bipolar plate (BP) formed from a polymer material, the bipolar plate being arranged so as to seal the open channel (OpChan), the bipolar plate being welded to the frame (TF).
Resumen de: TW202503114A
Provided are a gas production method and a gas production apparatus that are capable of preventing the composition of generated gas in a gas phase part of each circulation tank from reaching a flammability limit to reduce a bad effect of a remaining dissolved gas in electrolyte on gas purity even when an electrolyte exchange is carried out between an anode side circulation tank and a cathode side circulation tank. In the gas production method of producing oxygen gas and hydrogen gas by electrolyzing electrolyte which is alkaline water by means of an electrolysis vessel, the electrolyte is depressurized when an electrolyte on the anode side and an electrolyte on the cathode side are exchanged.
Resumen de: CN120677016A
Provided herein are water-reactive aluminum compositions comprising aluminum or an alloy thereof and an activating metal alloy (e.g., a non-eutectic activating metal alloy comprising bismuth, tin, indium, and gallium; or an activating metal alloy comprising bismuth, tin and indium). Some water-reactive aluminum compositions provided herein are free of gallium. Also provided herein are methods of activating aluminum to provide a water-reactive aluminum composition. Also provided are fuel mixtures comprising the water-reactive aluminum composition described herein and a water-reactive aluminum composition having an increased gallium content; and methods of providing hydrogen and/or steam using the water-reactive aluminum compositions described herein.
Resumen de: CN116491864A
The invention is applicable to the technical field of cleaning appliances, and discloses a bottom cover assembly, which seals the bottom of an integrated water tank comprising a clear water tank and a sewage tank, and comprises: an electricity taking access device for connecting a water electrolysis module arranged in the clear water tank to an external power supply interface of the water tank; the upper surface of the bottom cover middle frame seals the clear water tank and/or the sewage tank, the lower surface of the bottom cover middle frame defines a wiring cavity used for connection of the electricity taking access device, the lower surface of the bottom cover middle frame is provided with a bearing ring rib used for supporting the weight of the integrated water tank, and the electricity taking access device is installed on the upper surface or the lower surface of the bottom cover middle frame. The invention further discloses the integrated water tank comprising the bottom cover assembly. The electricity taking access device arranged on the bottom cover assembly and used for taking electricity from the water electrolysis module is far away from the clear water outlet, so that the short circuit of the electricity taking access device caused by water leakage is avoided; the bottom cover assembly not only ensures complete insulation and isolation of the water tank and the electricity taking electrode of the water electrolysis module, but also ensures continuous maintainabi
Resumen de: US2024294395A1
A process for preparing metal oxide comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum. The process comprising:reacting a metal sulfate comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum with lithium hydroxide and optionally a chelating agent to obtain a solid comprising a metal hydroxide comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum, and a liquid comprising lithium sulfate, the metal sulfate comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum;separating the liquid and the solid from one another to obtain the metal hydroxide;submitting the liquid comprising lithium sulfate to an electromembrane process for converting the lithium sulfate into lithium hydroxide; andreusing at least a first portion of said lithium hydroxide obtained by the electromembrane process for reacting with the metal sulfate;reacting at least a second portion of said lithium hydroxide obtained by the electromembrane process with the obtained metal hydroxide to obtain a mixture of metal hydroxides; androasting said mixture of metal hydroxides to obtain the metal oxide.
Resumen de: CN120659909A
An electrochemical cell stack (1) comprising a plurality of cells (2) separated from one another by bipolar plates (5, 5 '), where each cell (2) is formed by two half-cells (3, 4) between which a membrane (6) surrounded by a support frame (7) is arranged, and where a porous transport layer (10, 11) is present in each half-cell (3, 4). The support frame (7) describes a step shape having two adjacent cross-sectional areas (12, 13), in which the edge (18) of the membrane (6) lies in a step (17) formed by the cross-sectional areas (12, 13) and the porous transport layer (10) of the half-cell (3) extends into the step (17), and in which the porous transport layer (10) of the half-cell (3) extends into the step (17). According to the invention, the support frame (7) comprises at least one sealing arrangement (15) injection molded onto the support frame (7) and comprising an electrically insulating sealing material, according to the invention, the sealing arrangement (15) comprises three sealing regions (19, 20, 21), each having at least one sealing lip (22, 22 '), in particular a first sealing region (19) and a second sealing region (20) and a third sealing region (21), which are assigned to narrower regions of the two cross-sectional regions (12, 13) facing the membrane (6), the first sealing region and the second sealing region each contact exactly one bipolar plate (5, 5 '), and the third sealing region is located on a side of the support frame (7) facing away from the step (17)
Resumen de: AU2023408768A1
A method of hydrogen production includes providing a solution and immersing a device in the solution. The device includes a substrate having a surface, an array of conductive projections supported by the substrate and extending outward from the surface of the substrate, and a plurality of catalyst nanoparticles disposed over the array of conductive projections. The solution includes dissolved sodium chloride (NaCl).
Resumen de: MA66611A1
An innovative method for producing green hydrogen from seawater combines electromagnetic field-assisted electrolysis with renewable energy. This efficient approach reduces reliance on fossil fuels while improving the kinetics of chemical reactions through the use of a specific electromagnetic field. The saline residue is desalinated to produce fresh water, while the purified hydrogen is stored as a clean energy source, offering significant benefits for industry, transportation, and the environment.
Resumen de: WO2025002651A1
The invention relates to an energy supply device (1) for an electrolyzer (10). The energy supply device (1) has an input circuit (2) and a transformer (3). The input circuit (2) is designed to be connected to an energy source (4) or an energy supply network. In order to improve the energy supply device (1), the input circuit (2) is additionally designed to provide at least two different electric potentials at contacts (5), and the converter (3) is electrically connected to at least one of the contacts (5) on the input side by means of a respective conductor (6). The energy supply device (1) is designed to change the contact (5) connected to the converter (3) by reconnecting at least one conductor (6) of the energy supply device (1). The invention additionally relates to an electrolysis device comprising such an energy supply device (1) and an electrolyzer (10) and to a method for controlling such an energy supply device (1) or such an electrolysis device (100), wherein the converter (3) is operated using a voltage level produced by the input circuit, and at least one conductor (6) of the energy supply device (1) is manually reconnected from a first contact of the contacts (5) to a second contact of the contacts (5) in order to change the voltage level.
Resumen de: WO2026022486A1
Described herein includes a method for the production of hydrogen gas, the method comprising: (i) providing a DC electrical power supply; (ii) providing a plasma reactor (100) comprising: (a) a plasma chamber (105), (b) a plasma torch (135) comprising a first plasma electrode extending into the plasma chamber, (c) a second plasma electrode extending into the plasma chamber, and (d) first and second spray systems, each extending into the plasma chamber; (iii) establishing a DC electric potential between the first plasma electrode and the second plasma electrode to generate and sustain a reaction zone about a plasma arc therebetween; (iv) providing a spray of a hydrogen-containing feedstock into the reaction zone from the first spray system, whereby a mixture of gases comprising hydrogen gas is formed in the plasma chamber by decomposition of the hydrogen-containing feedstock; and (v) providing a spray of water into the plasma chamber adjacent to the reaction zone from the second spray system, whereby the spray of water cools and dilutes the mixture of gases formed in step (iv).
Resumen de: AU2024293794A1
The present invention is directed to a method and plant for controlling a dynamic operation in a Power-to-X plant via a DCS (distributed control system). Said plant comprises one or more electrolyzers for converting water into hydrogen and said plant can produce one or more of ammonia, methanol, ethanol, DME, methane or synthetic fuels such as gasoline or jet fuel.
Resumen de: CN121039323A
A method of generating hydrogen and oxygen from a liquid feed stream by an integrated system of forward osmosis and electrolysis is disclosed wherein the method comprises the steps of feeding water into an electrolyte solution by means of forward osmosis and applying a voltage across the electrolyte solution to generate hydrogen and oxygen, characterized in that the electrolyte solution comprises an electrolyte, an ionic liquid and a solvent wherein the electrolyte is used in an amount ranging from 1 wt% to 10 wt% of the electrolyte solution and wherein the ionic liquid is used in an amount ranging from 1 wt% to 5 wt% of the electrolyte solution, and wherein the solvent is used in an amount ranging between 75 wt% and 99 wt% of the electrolyte solution.
Resumen de: CN120917183A
An electrode for water electrolysis under alkaline conditions, comprising: a nickel metal substrate; a ceramic material having a perovskite-type structure comprising an oxide of at least one metal selected from lanthanide series elements including lanthanum, cerium and praseodymium, the ceramic material forming a coating on the nickel metal substrate; the metal nanoparticles are embedded within the ceramic material. The metal nanoparticles facing the alkaline solution have electrochemical activity, while the metal nanoparticles facing the metal substrate form anchor points between the metal substrate and the ceramic material.
Resumen de: AU2024213038A1
An electrolyser system and method of electrode manufacture. The electrolyser system may comprise a first vessel in communication with an electrolyser stack, a power supply, an electrode, a separator, a membrane, and a second vessel in communication with the electrolyser stack. The electrode may comprise a catalytic material and a micro- porous and/or nano-porous structure. The method of electrode manufacture may comprise providing a substrate, contacting the substrate with an acidic solution, applying an electric current to the substrate, simultaneously depositing a main material and supporting material comprising a scarifying material onto the substrate, and leaching the scarifying material.
Nº publicación: WO2026020744A1 29/01/2026
Solicitante:
SUNRUI MARINE ENV ENGINEERING CO LTD [CN]
\u9752\u5C9B\u53CC\u745E\u6D77\u6D0B\u73AF\u5883\u5DE5\u7A0B\u80A1\u4EFD\u6709\u9650\u516C\u53F8
Resumen de: WO2026020744A1
A gas supply system for an LNG dual-fuel main engine, and an LNG dual-fuel powered ship. The gas supply system comprises an LNG supply unit (10), a dual-fuel main engine (20), an electrolytic hydrogen production unit (30), an exhaust gas recirculation unit (40), and a cold and heat circulation unit (50). The LNG supply unit (10) comprises an LNG storage tank (11), a submersible pump (12), an LNG heat exchanger (13) and a buffer tank (14). The electrolytic hydrogen production unit (30) comprises a pure water unit (31), a pure water heat exchanger (32), an electrolytic cell (33), a hydrogen storage tank (34), and an oxygen storage tank (35). The exhaust gas recirculation unit (40) comprises a flue gas heat exchanger (41). The cold and heat circulation unit (50) comprises an expansion water tank (51) and a circulation pump (52).