Resumen de: CN120138684A
本发明公开了一种水电解制氢用抗逆电流电极,所述电极上设有催化剂涂层,所述催化剂的化学式为(Ni0.8Ti0.05Zr0.05MoxSb0.1‑x)O,其中,0<x<0.1。本发明以Ni为主要活性组分,保证高催化活性。通过引入Zr、Ti、Mo、Sb等多种元素进行高熵化设计,利用高熵效应提升材料的化学稳定性和机械性能。通过调节Mo和Sb的比例,优化电极的催化活性和抗逆向电流能力。
Resumen de: CN120138664A
本发明涉及一种便携式轻量化水电解制氧设备,包括:壳体,顶部设有横槽和放置槽;电解装置,安装在壳体内部,用于电解产生氧气;氧气管和氢气管,一端均与电解装置连接,另一端均贯穿壳体;气体纯化装置,与氧气管一端连接,用于对电解产生的氧气纯化处理;移动板,横向滑动设置在横槽内;活动板,竖向滑动设置在移动板一侧;放置板,安装在活动板顶部,与放置槽活动适配,内设有槽口,用于放置移动电源;定位组件,设在放置板底部,用于对移动电源进行限位固定。本发明提供的便携式轻量化水电解制氧设备通过转动杆、横移板和定位板等多个部件的配合实现了对移动电源的固定限位,保证了在充电状态下移动电源的稳定性。
Resumen de: CN120132760A
本发明公开了一种PEM电解水制氢用贵金属催化剂活化装置,涉及催化剂活化技术领域,包括活化加工罐,所述活化加工罐内顶壁的中心转动设置有转动轴,所述转动轴的底部设置有搅拌组件,所述活化加工罐的顶部固定安装有导流箱,所述转动轴的顶端贯穿活化加工罐并转动安装在导流箱内,所述转动轴上设置有多个叶片;本发明在加热贵金属催化剂的过程中会产生的水蒸气以及有机物烟气,此时烟气以及水蒸气会通过曲型管进入导流箱内,并推动叶片带动转动轴以及搅拌件转动,方便对大量贵金属催化剂颗粒进行搅拌,使得可均匀受热,此外,搅拌件的运动可由催化剂活化时产生的烟气作为动力源,不仅节省了电能,还可避免不必要的维护和维修成本。
Resumen de: CN120132750A
本发明公开了一种旋流振荡耦合超声压电制氢装置与方法,采用旋流超声耦合反应器进行压电催化制氢,将分散有压电催化剂和助催化剂的固液混合体系沿切向高速通入旋流超声耦合反应器内,通过旋流耦合超声进行压电催化制氢;本发明的旋流耦合超声的压电制氢方法,旋流耦合超声提供驱动力、强化传质及旋流脱气三个方面显著强化超声制氢的效率;超声振动棒在旋流超声耦合反应器内充当中心固棒的作用,在压电制氢反应过程中稳定流场、降低能耗;二者共同作用,实现了“1+1>2”的效果。
Resumen de: CN120143011A
本发明公开了一种检测PEM水电解不同失效情况的电化学谱学方法。本发明的检测方法包括:选取测试振幅;通过可提供非线性谱学分析的电化学工作站向PEM水电解制氢系统在恒电流模式下施加激励信号;对PEM水电解制氢系统进行稳态V‑I测试、电化学阻抗和总谐波失真测试;通过所述电化学工作站的信号采集单元采集响应信号,对响应信号进行分析,将信号从时域转换到频域,获得相应的检测谱图;将故障谱图与标准谱图分析对比,根据不同的PEM失效情况对应总谐波失真在不同频域范围内的不同变化,确定失效类型。本发明能有效地区分PEM水电解制氢系统发生氢氧串气、压力变化、温度变化、进液量变化时所造成的PEM失效。
Resumen de: DE102023134698A1
Die Erfindung betrifft ein Verfahren zum Herstellen einer Elektrode (10) für die Verwendung bei der alkalischen Elektrolyse von Wasser, das Verfahren umfassend Bereitstellen eines metallischen Substrats (12), Bereitstellen eines Beschichtungswerkstoffes (26), umfassend ein Pulver (28) aus einem Katalysatormaterial (20) und nicht-metallische Partikel (24), und Beschichten zumindest eines Abschnitts des Substrats mit dem Beschichtungswerkstoff. Die Erfindung betrifft auch derart herstellte Elektroden.
Resumen de: AU2023397261A1
The invention relates to an electrolysis system (1) with a pressure electrolyzer (3) for generating hydrogen (H
Resumen de: WO2025118002A1
The invention relates to a method (1000) for operating an electrolysis system (10) which has at least one electrolyzer stack (100), with an air side (120) and a reactant side (130), and different operating situations. The method (1000) has the steps of detecting the operating situation of the electrolysis system (10) and controlling the electrolysis system (10) on the basis of the detected operating situation. In the method (1000), the operating situation of the electrolysis system (10) is determined to be a special operating situation if the detected operating situation deviates from a normal operation of the electrolysis system (10) for generating a synthesis gas from a reactant as intended. For the detected special operating situation, at least one electric heater (221, 222) is controlled so as to control the temperature of air which can be supplied to the air side (120) in order to control the temperature of the electrolyzer stack (100). Furthermore, for the special operating situation, a heating gas is guided to the reactant side (130), said heating gas having at least one protective gas. The invention also relates to a computer program product, to a control device (20) for carrying out the method (1000), and to an electrolysis system (10) comprising the control device (20).
Resumen de: US2025188628A1
An electrolysis cell for chlor-alkali or alkaline water electrolysis comprises two cell elements each defining an electrode chamber by providing a back wall and sidewalls of the electrode chambers, an electrode accommodated in each of the electrode chambers, and a sheet-like separator extending in a height direction and a width direction of the electrolysis cell, the separator being interposed in a joint between the two cell elements and providing a separating wall between the electrode chambers, wherein at least one of the electrodes is made from a sheet of metallic mesh, which is supported by a plurality of webs attached to the back wall of the respective electrode chamber, the webs extending in the height direction of the electrolysis cell, and wherein a plurality of ribs extending in the width direction of the electrolysis cell is carried by the webs, wherein the electrode is disposed on the plurality of ribs.
Resumen de: US2025188630A1
An oxynitride catalyst includes NiaMbNcOd, wherein M is Nb, Mn, or Co, a>0, b>0, c>0, d>0, and a+b+c+d=1. A hydrogen evolution device includes an anode and a cathode dipped in an electrolyte, and the anode includes the oxynitride catalyst. The oxynitride catalyst can be disposed on a support. The oxynitride catalyst may have a polyhedral structure.
Resumen de: US2025188633A1
The present invention relates to the generation of at least one electrolysis product, in particular to a hydropower-electrolysis system, a hydro power plant and a method for generating at least one electrolysis product. An electrolysis assembly includes a plurality of electrolysis cells configured to generate, upon provision of a direct electrical current, at least one electrolysis product from a supply medium. A hydropower assembly is electrically connected to the electrolysis assembly for operating the electrolysis cells of the electrolysis assembly based on electrical power generated by the hydropower assembly.
Resumen de: US2025188565A1
Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
Resumen de: US2025188631A1
An embodiment water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase. An embodiment method of preparing a water electrolysis catalyst includes preparing a mixture including an iridium precursor, a nickel precursor, and cysteamine hydrochloride, drying the mixture, grinding the dried mixture, and firing a ground product, wherein the water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase.
Resumen de: WO2025119096A1
The present disclosure relates to a method for preparing an oxygen evolution electrode, an oxygen evolution electrode and an electrolytic cell. The method (100) comprises: preparing a thin film on the surface of a conductive substrate by means of magnetron sputtering, wherein the thin film at least contains a catalyst substance serving as a catalyst in an oxygen evolution reaction and a soluble substance that can dissolve in an alkaline solution (102); and making the thin film come into contact with the alkaline solution, such that the soluble substance dissolves in the alkaline solution, so that a porous catalyst layer consisting of the catalyst substance is formed on the surface of the conductive substrate, and the conductive substrate and the porous catalyst layer form an oxygen evolution electrode (104). The method of the present disclosure can improve the catalytic activity and stability of an oxygen evolution electrode, and facilitates large-scale oxygen evolution electrode preparation, and can effectively reduce the production cost and the application cost.
Resumen de: WO2025121289A1
Provided is a membrane electrode assembly capable of suppressing hydrogen crossover. The membrane electrode assembly is for solid macromolecule-type water electrolysis and comprises: an anode having a catalyst layer; a cathode having a catalyst layer; and a solid macromolecule electrolyte membrane disposed between the anode and the cathode. At least one of the catalyst layer in the anode and the catalyst layer in the cathode includes a fluorine-containing polymer having an ion exchange group, and having a unit having a cyclic ether structure.
Resumen de: WO2025122112A1
The invention relates to a hydrogen sulfide separation system (A) and method for producing pure hydrogen (30) with high efficiency and environmental sustainability for the energy sector, while also converting sulfur (40) into economic value by producing sulfuric acid (60) The system includes a gasification unit (100) to convert liquid hydrogen sulfide (10) into gaseous hydrogen sulfide (20), an electrolyzer (200) equipped with a palladium-alloy membrane (290) to separate hydrogen (30) and sulfur (40) through electrolysis, and an oxidation unit (300) to oxidize sulfur (40) using hydrogen (30) and oxygen (50), resulting in sulfuric acid (60). The method enhances energy efficiency, reduces operating costs, and offers a sustainable solution for hydrogen production.
Resumen de: DE102023212354A1
Elektrolysesystem mit einem Stack (1), der einen Anodenraum (2) und einen Kathodenraum (3) aufweist und der dazu eingerichtet ist, Wasser elektrolytisch in Wasserstoff und Sauerstoff aufzuspalten, wobei der Kathodenraum (3) einen Einlass (9) und einen Auslass (10) aufweist. Dem Stack (1) ist ein Gas-Flüssig-Separator (11) zugeordnet, der über eine Ausleitung (12) mit dem Auslass (10) des Kathodenraums (3) verbunden ist und in dem Flüssigkeit von Gas getrennt wird, wobei der Gas-Flüssig-Separator einen Gasauslass (13) zum Abströmen des abgetrennten Gases aufweist. Der Gasauslass (13) mündet in einen zentralen Gas-Flüssig-Separator (25) zur Trennung von Flüssigkeit und Gas.
Resumen de: DE102023212440A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einem auf dem Meeresgrund verankerten Turm (19) und mit einer Elektrolyseanlage (5), wobei die Elektrolyseanlage (5) mit einer Versorgungsleitung (11) an die Windkraftanlage (1) angeschlossen ist, und wobei die Elektrolyseanlage (5) einen in einem Container (9) angeordneten Elektrolyseur (13) aufweist, wobei der Container (9) unterhalb des Meeresspiegels (25) angeordnet ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems. Dabei wird von einem unterhalb des Meeresspiegels (25) angeordneten Elektrolyseur (13) der Elektrolyseanlage (5) Wasser in Wasserstoff (H2) und Sauerstoff zerlegt, wobei der erzeugte Wasserstoff (H2) über eine Produktgasleitung (7) abtransportiert wird.
Resumen de: US2025186304A1
A hydrogen generation device includes a tubular tank and a top lid combined with the tank. An immersion tube in which a hydrogen generating agent package is stuffed is placed in the tank. The hydrogen generating agent package is submerged in water after water is poured in the tank to generate hydrogen, which is released through a tank opening of the tank. The hydrogen generating agent package accommodates hydrogen generating agent powders including calcium oxide and aluminum powders, both of which are mixed and wrapped with a nonwoven fabric, as well as a little catalytic sodium carbonate added inside. For inhibition of free radicals and promotion of metabolism, the hydrogen generation device is further provided with a connector and a hose for a skin-care instrument, a nasal mask, an eye shield or an ear cleaner through which hydrogen is supplied as required.
Resumen de: US2025187912A1
A catalyst includes a ruthenium metal loaded on a support, wherein the support has a chemical formula of AxB(1-x)Oy. A is an alkaline earth metal, B is aluminum, zinc, cerium, manganese, or a combination thereof, x is 0.05 to 0.50, and y is chemical stoichiometry. The catalyst may further include an auxiliary agent loaded on the support. The catalyst can be used to decompose gaseous ammonia.
Resumen de: US2025188621A1
Device for generating hydrogen gas and oxygen gas from water, comprising a case, which forms a hydrolysis chamber designed to contain an amount of water; electrode means that act as a cathode and an anode; and gas-separating means, disposed in the hydrolysis chamber between the cathode and the anode, which comprise a permeable membrane segment suitable for preventing the generated hydrogen gas and oxygen gas from passing through the permeable membrane segment and mixing together, the hydrolysis chamber being divided into a first portion that contains the cathode and a second portion that contains the anode, wherein the first and second chamber portions are in fluid communication with respective pipes for hydrogen gas and oxygen gas. Another object of the invention is a system for the same purpose, comprising at least one device as described above.
Resumen de: US2025188632A1
An electrolytic method of loading hydrogen into a cathode includes placing the cathode and an anode in an electrochemical reaction vessel filled with a solvent, mixing a DC component and an AC component to produce an electrolytic current, and applying an electrolytic current to the cathode. The DC component includes cycling between: a first voltage applied to the cathode for a first period of time, a second voltage applied to the cathode for a second period of time, wherein the second voltage is higher than the first voltage, and wherein the second period of time is shorter than the first period of time. The peak sum of the voltages supplied by the DC component and AC component is higher than the dissociation voltage of the solvent. The AC component is selected based on a local minimum of a Nyquist plot to minimize energy loss while maintaining hydrogen transport.
Resumen de: US2025188620A1
A new energy hydrogen production system and a control method therefor. In the new energy hydrogen production system, a new energy input module supplies power to electrolytic cells by means of a power conversion module; and a control system of the new energy hydrogen production system is used for controlling, according to the power of the new energy input module, the power conversion module to work, such that among N electrolytic cells in an operation state, at least N-1 electrolytic cells work in a preset load range. The preset load range is a corresponding load range having the highest system efficiency in an electrolytic cell working range division result prestored in the control system.
Resumen de: KR20250085126A
본 발명은 수전해 수소발생반응용 Pt/LaNiO3 촉매에 관한 것으로서, 상세하게는, 수전해 시스템에서 수소발생반응(HER) 전극에 적용되는 신규 촉매로써 수전해시 동일 전압에서의 수소발생 반응성이 우수하며, 또한 과전압을 낮추는 효율, 촉매 안정성이 우수한 수전해 수소발생반응용 Pt/LaNiO3 촉매에 관한 것이다.
Nº publicación: KR20250085401A 12/06/2025
Solicitante:
주식회사싸이트로닉
Resumen de: KR20250085401A
본 발명은 이퓨얼(e-fuel)을 제조하기 위한 시스템 및 방법에 관한 것으로, 본 발명에 따르면, 최근, 환경오염 문제가 날로 심각해지면서 기존의 석유나 가스 등의 연료를 대신하여 친환경 연료에 대한 요구가 높아짐에 따라 기존의 화석연료에 비해 이산화탄소 배출량을 크게 감소할 수 있는 친환경 연료로서 이퓨얼(E-Fuel)이 제시된 바 있으나, 전체적인 제조공정이 복잡하여 가격이 매우 높은 단점이 있었던 종래기술의 이퓨얼 제조시스템 및 방법들의 문제점을 해결하기 위해, 수소(H2)와 이산화탄소(CO2)를 이용하여 촉매반응을 통해 친환경적으로 이퓨얼을 생성할 수 있도록 구성됨으로써, 보다 친환경적으로 이퓨얼을 생산할 수 있는 동시에, 이퓨얼 제조시스템의 생산성을 높이고 전체적인 비용을 절감할 수 있도록 구성되는 수소와 이산화탄소를 이용한 이퓨얼 제조시스템 및 방법이 제공된다.