Resumen de: US2025188630A1
An oxynitride catalyst includes NiaMbNcOd, wherein M is Nb, Mn, or Co, a>0, b>0, c>0, d>0, and a+b+c+d=1. A hydrogen evolution device includes an anode and a cathode dipped in an electrolyte, and the anode includes the oxynitride catalyst. The oxynitride catalyst can be disposed on a support. The oxynitride catalyst may have a polyhedral structure.
Resumen de: CN119677896A
In one embodiment, discussed herein is a method of producing hydrogen, the method comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, where the membrane is both electronically and ionically conductive; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia; (c) introducing an oxidizing agent to the anode; and (d) introducing a second stream to the cathode, wherein the second stream comprises water and provides a reducing environment to the cathode; wherein the hydrogen is generated from water in an electrochemical manner; wherein the first stream and the second stream are separated by the membrane; and wherein the oxidant and the second stream are separated by the membrane.
Resumen de: EP4570949A1
A hydrogen gas generation system comprises a reactor chamber, an elongate cathode, an ammonia inlet, a hydrogen gas outlet, and a collection outlet. The reactor chamber has an input end and an output end. A wall of the reactor chamber between the input end and the output end is an anode. The elongate cathode extends between the input end and the output end through an interior of the reactor chamber. The ammonia inlet is positioned to introduce a liquid ammonia into the reactor chamber such that the liquid ammonia flows in a direction from the input end to the output end. The hydrogen gas outlet at the output end, wherein a hydrogen gas generated in the reactor chamber exits the reactor chamber through the hydrogen gas outlet. The collection outlet is at the output end. Nitrogenous compounds exit the reactor chamber through the collection outlet.
Resumen de: DK202330354A1
A method and system for operating a solid oxide cell (SOC) unit, the method comprising the steps of: i) providing a power supply unit (PSU) comprising a rectifier and converting an AC-current to a DC-current; ii) providing a solid oxide cell (SOC) unit comprising one or more SOC stacks, supplying steam to the one or more SOC stacks and serially connecting said one or more SOC stacks to said rectifier by providing said DC-current to the one or more SOC stacks, thereby powering the one or more SOC stacks for operation in electrolysis cell mode; and outputting hydrogen from said one or more SOC stacks; iii) interrupting said DC-current to the one or more of the SOC stacks, optionally interrupting said supply of steam to the one or more SOC stacks, and supplying a fuel source to the one or more SOC stacks, thereby switching the one or more SOC stacks from operation in electrolysis cell mode to operation in fuel cell mode; and outputting a DC-current from said one or more SOC stacks; iv) providing an electric heater and serially connecting said electric heater to said one or more SOC stacks operating in fuel cell mode, by directly providing said DC-current from said one or more SOC stacks to the electric heater. The invention provides also a system for carrying out the method.
Resumen de: JP2025090210A
【課題】より省電力で、水素を製造できる水素製造装置を提供すること。【解決手段】水素製造装置1は、アンモニアを貯留するアンモニアタンク2と、アンモニアタンク2から供給されるアンモニアを、窒素および水素に分解するプラズマリアクタ3と、プラズマリアクタ3から供給される、未分解のアンモニア、窒素および水素の混合物から、未分解のアンモニアおよび窒素と水素とを分離する第1分離膜5と、第1分離膜5により分離された未分解のアンモニアおよび窒素の混合物から、未分解のアンモニアおよび窒素を分離する第2分離膜6と、第2分離膜6により分離された未分解のアンモニアを、プラズマリアクタ3に供給するためのアンモニア戻りライン14とを備える。【選択図】図1
Resumen de: CN119156365A
A process for manufacturing methanol having a deuterium content of less than 90 ppm based on the total hydrogen content, the process comprising the steps of: (a) providing hydrogen having a deuterium content of less than 90 ppm based on the total hydrogen content by water electrolysis using power generated at least in part from non-fossil renewable resources; (b) providing carbon dioxide; (c) reacting hydrogen and carbon dioxide in the presence of a catalyst to form methanol.
Resumen de: CN119278297A
The invention relates to a gas-permeable electron-conducting plate for use as a porous transport layer for an electrolytic cell and to a method for producing said gas-permeable electron-conducting plate, to a building unit for an electrolytic cell, and to an electrolytic cell.
Resumen de: CN119032199A
A hydrocarbon feed stream is exposed to heat (pyrolysis) in the absence of oxygen to convert the hydrocarbon feed stream into a solid stream and a gaseous stream. The solid stream comprises carbon. The gas stream comprises hydrogen. The gas stream is separated into an off-gas stream and a first hydrogen stream. The first hydrogen stream comprises at least a portion of the hydrogen in the gas stream. The carbon is separated from the solids stream to produce a carbon stream. The water stream is electrolyzed to produce an oxygen stream and a second hydrogen stream. At least a portion of the oxygen in the oxygen stream and at least a portion of the carbon in the carbon stream are combined to produce electrical energy and a carbon dioxide stream. At least a portion of the generated electrical energy is used to electrolyze the water stream.
Resumen de: US2025188631A1
An embodiment water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase. An embodiment method of preparing a water electrolysis catalyst includes preparing a mixture including an iridium precursor, a nickel precursor, and cysteamine hydrochloride, drying the mixture, grinding the dried mixture, and firing a ground product, wherein the water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase.
Resumen de: CN120138663A
本发明公开了一种电解水制氢设备及其方法,涉及电解水制氢技术领域。一种电解水制氢设备包括外壳,所述外壳内部设置有电解槽,所述电解槽由阳极室和阴极室组成,且所述阳极室与阴极室通过隔膜分隔开;所述阳极室内设有阳极板,并通过阳极导电棒与电源正极相连;所述阴极室内设有阴极板,并通过阴极导电棒与电源负极相连。通过进水口向阳极室和阴极室内注入去离子水并确保充满整个空间,然后启动直流电源使电流通过电极板,在阳极产生氧气、阴极产生氢气;最后,产生的气体通过出气口及其连接的管道被收集到各自的气体收集罐中。本发明通过使用质子交换膜作为隔膜,仅允许质子通过而阻止气体分子,使得阳极产生的氧气和阴极产生的氢气被有效分离。
Resumen de: CN120138703A
本发明属于催化剂制备技术领域,涉及清洁能源的高效制备,具体涉及利用稀土元素形成的二元合金催化剂作用于乙醇辅助下的节能制氢体系。本发明采用湿化学合成法,将钯与镧的金属前驱体以及六羰基钼与正辛酸溶剂均匀混合,油浴反应一段时间后,分离沉淀并依次洗涤、干燥,即可获得二元合金催化剂。随后我们在H型电解槽中探究了乙醇对传统电解水制氢体系的改善和促进作用,证明了乙醇辅助制氢为高效节能的制氢方式。本发明所述的催化剂制备方法简单,步骤少,操作简便。相比于Pd金属烯催化剂和商业Pd黑有着更为优异的催化活性和稳定性。所述的制氢方式更为高效,极大降低了能耗。
Resumen de: CN120138674A
本发明提供了一种碱性电解水用多腔室透明电解槽,涉及电解槽领域,采用的方案是:包括:阳极端板组件,所述阳极端板组件包括阳极端板和阳极导电环,所述阳极端板采用透明且不导电材料;阴极端板组件,所述阴极端板组件包括阴极端板和阴极导电环,所述阴极端板采用透明且不导电材料,所述阴极端板与所述阳极端板之间贯穿有对拉螺栓;复合极板,所述复合极板设置在相邻的两个所述电解室之间,所述复合极板包括阳极极框和阴极极框,所述阳极极框和所述阴极极框采用透明且不导电材料,所述阳极极框和所述阴极极框之间设置有导电板。本发明能够从端部和外周部分直观看到内部流场和电极的变化情况。
Resumen de: CN120138690A
本发明公开一种A位高熵化设计的电解水阳极催化剂及其制备方法,属于电解水催化剂制备技术领域。所述催化剂的化学式为(La0.25Sm0.25Eu0.25Ce0.25)NiO3。制备过程为按照设计的化学计量比分别称量La2O3、Sm2O3、Eu2O3、CeO2、Ni2O3粉末,采用湿法球磨、搅拌、造粒、高温烧结、过筛、等离子喷涂,制备得到的催化剂具有过电位低和稳定性好等优势,有望广泛应用在电解水制氢气的阳极催化剂材料。
Resumen de: CN120132723A
本发明公开了一种硼氢化物多相流动制氢反应器及方法,反应器包括壳体,壳体底端设置有排放管道,排放管道两侧设置有碱性硼氢化物溶液入口,壳体内设置有装有催化剂颗粒的反应管束,反应管束上方设置有百叶窗分离器,壳体上部设置有取样口通道和溶液排出管道,反应管束连接有冷却水管道。与传统的制氢反应器相比,该多相流动制氢反应器可以更加高效稳定,通过控制冷却水的温度来控制反应器温度,使产氢速率可控性更强。利用泡沫截断器来减少氢气泡的形成程度,再经过分离器达到气液分离效果,以获得更加纯净的氢气。
Resumen de: CN120138657A
本发明公开了一种碱性水电解制氢系统、气液分离装置及其应用,该装置包括:分离塔和自下而上依次设置于分离塔内部的气液分离分布器、洗涤载体、洗涤水分布器、除沫滤网和冷却器;分离塔的下部开设有流体入口和流体出口,分离塔的顶部设置有气体出口;气液分离分布器用于对导入至分离塔内的气液混合流体进行气液分离;从洗涤水分布器中喷出的洗涤水在洗涤载体表面分布,以使从气液分离分布器中分离出的气体中携带的液体与洗涤载体表面分布的洗涤水逆向接触并去除气体中携带的液体;除沫滤网用于清除气体中携带的液体;冷却器用于对气体和气体中携带的液体冷却,使得冷却后析出的液体在重力作用下回落至分离塔中,进而提高气液分离效率和分离纯度。
Resumen de: CN120138697A
本发明公开了一种钌掺杂的钴金属氧化物纳米片电催化剂及其制备方法和应用,涉及电催化剂技术领域,制备方法为:称取钴盐和均苯三甲酸共同溶解在甲醇溶液中,经过一次超声混合处理后得到混合液A;将含钌盐的甲醇溶液滴入混合液A中,经过二次超声混合处理后得到混合液B,将混合液B经过水热反应后得到钌钴金属有机骨架前驱体;将钌钴金属有机骨架前驱体经过煅烧处理。与现有技术相比,本发明制备的钌掺杂的钴金属氧化物纳米片电催化剂在碱性电解水反应中展现出优异的析氢电催化活性和稳定性,该催化剂的性能优于商业铂碳催化剂,且能够在100小时的持续测试中保持稳定的电位输出,无明显衰减。
Resumen de: CN120138706A
本发明属于电催化技术领域,具体涉及一种含有界面暴露CrOx团簇助催化剂的光电极及其制备方法和应用。通过简单的滴涂法和碱刻蚀方法制备了具有EJI结构的CrOx团簇作为高效助催化剂,这极大的简便了新型助催化剂(团簇、基团、量子点)的制备方法。本发明将电催化剂中界面暴露的结构应用在OEC当中,使OEC的催化活性进一步提升,从而提高了光阳极的性能。In2S3中In原子原位引入到CrOx当中,调控了CrOx团簇界面电子状态,促进了光生空穴的转移,降低了表面过电势,提升了表面OER动力学过程。
Resumen de: CN120138711A
本发明提供一种双金属磷化物及其制备方法和在电解海水中的应用,所述双金属磷化物的制备方法包括:S1,将镍盐、铁盐及二甲基咪唑加入溶剂中,搅拌,得到前驱液;将前驱液进行溶剂热反应,得到含镍铁的前驱体;其中,所述前驱液中,镍离子和铁离子的总摩尔数与二甲基咪唑的摩尔数之比为1:(0.25~0.75);S2,将含镍铁的前驱体与磷化试剂进行反应,得到双金属磷化物。所述双金属磷化物形貌为纳米片与纳米颗粒的复合体,所述复合体中,纳米颗粒负载在纳米片上。所述的双金属磷化物作为电解池的阳极材料,可以用于直接电解海水制氢。
Resumen de: CN120138702A
本发明涉及电解水催化剂技术领域,公开了一种催化材料及其制备方法、电解水析氢催化电极和电解水析氢的方法,所述催化材料包括载体以及负载在载体上的活性金属组分;其中,所述载体为含有S空位的过渡金属硫化物,且至少部分所述过渡金属硫化物为1T相;所述活性金属组分选自VIII族金属和IB族金属中的至少一种。所述催化材料具有优异的HER催化性能,催化稳定性好。
Resumen de: CN120138696A
本发明涉及纳米材料制备和应用技术领域,尤其涉及一种过渡金属硒化物催化剂及其制备方法与应用,包括:首先将金属镍盐、铁盐、尿素和氟化铵溶解在去离子水中,通过水热法合成镍铁层状氢氧化物纳米片前驱体;其次采用硒化反应制得铁掺杂硒化镍催化剂;利用铁掺杂策略调控硒化镍的电子结构,提高催化性能。制备的铁掺杂硒化镍催化剂用于析氢反应和硫离子氧化反应时具有良好的催化活性。在两电极硫离子氧化耦合制氢电解池中,仅需电压0.439V即可输出电流密度10mAcm‑2,实现高效节能制氢和硫离子氧化升级为高附加值单质硫产物的目标。本发明具有制备过程简单可控、原材料价格低廉和易于批量生产等优点,可作为高效的电解水制氢和硫离子氧化反应的催化剂。
Resumen de: CN120138679A
本申请提供一种电解水制氢膜电极及其制备方法、电解槽,属于电解水制氢技术领域,电解水制氢膜电极包括复合阳极层、阴离子交换膜和复合阴极层,其中,复合阳极层包括阳极基底层、第一气体扩散层和阳极催化层。阴离子交换膜,设置于复合阳极层具有阳极催化层的一侧,复合阴极层设置于阴离子交换膜背离复合阳极层的一侧,复合阴极层包括阴极基底层、第二气体扩散层和阴极催化层。本申请实施例提供的电解水制氢膜电极能够消除至少部分部件之间的界面电阻,使得离子传输和气体扩散更加顺畅,提高电解效率。
Resumen de: CN120138693A
本发明属于材料领域,公开了一种用于双功能碱性电解水锰掺杂硫化镍/多孔泡沫镍电极的制备方法。本发明通过两步电沉积的方式,首先对泡沫镍基底进行活化,然后在活化后的多孔泡沫镍基底上电沉积硫化镍并掺杂锰。本发明在多孔泡沫镍上生长的锰掺杂硫化镍纳米结构,构建了可用于双功能电解水的电极,该电极的多孔结构在高电流密度下,能够有效加速传质过程,同时促使反应产生的气泡快速逃逸。此外,硫化镍经过锰的掺杂,优化了电子结构,具有导电性增强、电化学活性面积增大、活性位点充分暴露和中间体吸附优化等特点。本发明的制备方法为实际水电解中高性能电极的制备提供了一种有效的策略。
Resumen de: CN120138709A
本发明涉及一种用于碱性氢气析出反应的掺杂型钕基复合电催化剂及其制备方法与应用。该催化剂以钕氧化物(Nd2O3)为基体材料,通过掺杂磷(P)和钌(Ru),优化了催化剂的电子结构,显著提高了其催化活性和稳定性。催化剂采用简单的水热法和低温磷化处理制备,具有均匀的连续平整的纳米层结构,有利于电子传输和反应活性位点的暴露。在1.0 M KOH电解液中,该催化剂表现出极低的过电位(11.8 mV)和优异的稳定性,显著优于商业Pt/C催化剂和未掺杂的钕氧化物催化剂。本发明的复合电催化剂不仅实现了高效、稳定的碱性氢气析出反应,还为设计高性能非贵金属催化剂提供了新的思路。
Resumen de: CN120143785A
本申请提供一种大规模制氢工厂的故障定位解决方法和系统、计算机可读存储介质,涉及制氢工厂技术领域。方法包括:S1:通过监测在线数据或提取关键特征,进行异常预警;S2:基于异常预警信号,进行故障定位;S3:识别出故障的部件,并进行部件分离;S4:使用故障算法辨识故障类型并定量;S5:进行故障溯源;S6:基于经济影响分析给出最优解决方案;S7:排查隐患。该方法和系统用以异常预警、目标定位、故障诊断并提出处理建议,以实现分析目标分流、算力高效分配。
Nº publicación: CN120136734A 13/06/2025
Solicitante:
中国科学院大连化学物理研究所
Resumen de: CN120136734A
本发明提供一种三元有机共晶的制备及其在光催化中的应用。该三元有机共晶P‑TS‑TC的分子式为(Pyrene)0.1(TSB)0.9(TCNB),其中Pyrene为芘,TSB为反式‑1,2‑二苯乙烯,TCNB为1,2,4,5‑苯四乙腈。P‑TS‑TC的制备包括以下步骤:将芘、TSB和TCNB溶于乙腈溶剂中,乙腈溶剂自然挥发后即可得到橙黄色P‑TS‑TC单晶。本发明制备的三元共晶中存在电荷转移态(CT态),导致其光吸收范围相比于三种单体分子芘、TSB和TCNB均有明显红移。同时由于三种单体分子的能级呈梯度排列,能够有效促进P‑TS‑TC中的空穴转移,从而实现对共晶中CT态离域性的调控。相比于二元有机共晶P‑TC和TS‑TC,本发明制备的三元有机共晶P‑TS‑TC具有更长的载流子寿命和更高的光催化分解水制氢性能。