Resumen de: WO2025162652A1
The present invention relates to an open vessel for containing cathode active materials with a capacity in the range of 0.01 to 2000 litres composed of a composite comprising an aggregate phase comprising refractory particles; and a binder phase comprising binder refractory particles and an aluminosilicate phase. The binder refractory particles are embedded within the aluminosilicate phase; and wherein the sum of the refractory particles + aluminosilicate phase + binder refractory particles is at least 70 wt% of the total weight of the composite composition.
Resumen de: US2025253312A1
An all-solid-state lithium-ion secondary battery includes a positive electrode, a negative electrode, and a solid electrolyte between the positive electrode and the negative electrode. The negative electrode has a negative electrode current collector and a negative electrode active material layer that comprises a carbon material and Ag.
Resumen de: US2025253355A1
The present application provides a negative current collector and a preparation method thereof, a sodium secondary battery, and an electrical device. The negative current collector includes a matrix and a functional layer disposed on at least one side of the matrix and includes a multifunctional additive. The multifunctional additive includes NaxMNy*zH2O, where: M includes an atom capable of forming an alloy with Na; N includes at least one of atom O, atom S, or atom Se; and 0
Resumen de: WO2025163240A1
A computer implemented method for controlling a virtual power plant, VPP, to provide (401) symmetric power reserve for an electric grid, wherein the VPP comprises a plurality of battery units. The method includes detecting (402) a need to activate the power reserve for up regulation or for down regulation, wherein the up regulation comprises drawing energy from one or more battery units of the VPP and the down regulation comprises storing energy to one or more battery units of the VPP; obtaining (403) information about energy levels of the battery units of the VPP; arranging (404) the battery units to an up regulation priority order and to a down regulation priority order based on the information about energy levels of the battery units; and activating (407) battery units in the up regulation priority order for up regulation until required capacity is reached, or activating (408) battery units in the down regulation priority order for down regulation until required capacity is reached. The up regulation priority order is arranged (405) by first prioritizing battery units with energy level above a battery unit specific target level, and by then continuing the up regulation priority order by prioritizing battery units with energy level below the battery unit specific target level. The down regulation priority order is arranged by first prioritizing battery units with energy level below a battery unit specific target level, and by then continuing the down regulation priority ord
Resumen de: US2025253311A1
To provide a solid-state battery configured to suppress a short circuit and a method for producing the solid-state battery. A solid-state battery, wherein the solid-state battery comprises a cathode layer, an anode layer, and a solid electrolyte layer disposed between the cathode layer and the anode layer; wherein the anode layer comprises at least one of a lithium metal or a lithium alloy; wherein a ratio of a thickness of the solid electrolyte layer to a thickness of the anode layer is 0.65 or more and 0.77 or less; and wherein a filling rate of the solid electrolyte layer is 82.3% or more.
Resumen de: US2025253464A1
A protective element (114) for an electrochemical energy storage unit (102), e.g. for a battery cell (104), wherein the protective element (114) comprises the following: a protective layer (116), e.g. a hot gas particle stream abrasion protection layer (118), wherein the protective layer (116) comprises a protective material (120), e.g. a hot gas particle stream abrasion protection material (122).
Resumen de: US2025253458A1
A battery holder includes a base body accommodating a battery and a cover covering the base body. One side of the base portion of the cover is provided with a limiting structure to be limited with the base body, and two elastic arms, two latching sections and an auxiliary portion located between the two elastic arms extend from another side thereof. The two latching sections engage with two locking portions of the base body to fix the cover. A surrounding wall of the base body and the auxiliary portion collectively shield a side surface of the battery, and a base portion and the elastic arms collectively shield an upper surface of the battery, thereby shielding and protecting the battery.
Resumen de: US2025253463A1
A battery ejection system is disclosed. The battery ejection system comprises a pressure vessel, a battery submodule positioned at least partway in the pressure vessel and configured to release gas into the pressure vessel, and a seal of the pressure vessel configured to release in the event a pressure level in the pressure vessel exceeds a threshold pressure level. The battery submodule is configured to be ejected from an electrical connection in the event the seal is released.
Resumen de: US2025253333A1
Provided are: a modified sulfide solid electrolyte containing a sulfide solid electrolyte having a BET specific surface area of 10 m2/g or more and containing a lithium atom, a sulfur atom, a phosphorus atom, and a halogen atom, and a compound having two or more heterocyclic rings each having a carbon atom and an oxygen atom; and a method for producing the modified sulfide solid electrolyte, which has excellent coating suitability when coated as a paste and is capable of efficiently exhibiting excellent battery performance even when a sulfide solid electrolyte having a large specific surface area is used. Also provided are an electrode combined material and a lithium-ion battery using the modified sulfide solid electrolyte.
Resumen de: US2025253308A1
A negative active particle and a preparation method therefor, a negative sheet, and a cell are provided. Embodiments of the disclosure provide a negative active particle. The negative active particle has multiple pores, and an aspect ratio α of each of the multiple pores satisfies 1≤α≤8.
Resumen de: DE102025101441A1
Leistungsspeichervorrichtung (1) mit einem Paar von Leistungsspeicherzellen (100), die so angeordnet sind, dass sie einander in einer ersten Richtung zugewandt sind, einem Kühlelement (200), das in thermischem Kontakt mit dem Paar von Leistungsspeicherzellen in einer zweiten Richtung steht und das Paar von Leistungsspeicherzellen kühlt, und einem Wärmeisolierelement (300), das zwischen dem Paar von Leistungsspeicherzellen angeordnet ist. Das Kühlelement (200) umfasst ein Paar von Zellenkontaktabschnitten (210), die jeweils in thermischen Kontakt mit dem Paar von Leistungsspeicherzellen in der zweiten Richtung kommen, und einen Kupplungsabschnitt (220), der das Paar von Zellenkontaktabschnitten miteinander kuppelt. Ein thermischer Widerstand des Kupplungsabschnitts (220) ist größer als ein thermischer Widerstand jedes der beiden Zellenkontaktabschnitte (210).
Resumen de: DE102024103074A1
Die Erfindung betrifft ein Verfahren zum Verschäumen eines eine Vielzahl an Batteriezellen (10) umfassenden Batteriezellkomplexes (12) für eine Batterie eines Kraftfahrzeugs, bei welchem vor dem Verschäumen wenigstens ein Treibmitteldepot (24) mit einem Treibmittel an dem Batteriezellkomplex (12) angeordnet wird und anschließend der Batteriezellkomplex (12) mit einem Schäummaterial zumindest bereichsweise umschäumt wird, wobei das Schäummaterial durch Kontakt mit dem Treibmittel verstärkt aufschäumt, wodurch ein an das Treibmitteldepot (24) angrenzender definierter Bereich des Batteriezellkomplexes (12) beim Verschäumen durch Bilden einer Gasblase (26) frei von dem Schäummaterial gehalten wird.
Resumen de: DE102024103123A1
Es werden eine Vorrichtung, ein Fortbewegungsmittel (10) sowie ein Verfahren zum Ladungsmanagement in einem Bordnetz (1) eines Fortbewegungsmittels (10) mit mehreren Energiespeicherpacks (2, 3) vorgeschlagen. Das Verfahren umfasst die Schritte: Ermitteln eines ersten Ladezustandes eines ersten Energiespeicherpacks (2) und eines zweiten Ladezustandes eines zweiten Energiespeicherpacks (3), Ermitteln einer Notwendigkeit zur relativen Änderung des ersten Ladezustandes gegenüber dem zweiten Ladezustand und im Ansprechen darauf Ansteuern eines dem ersten Energiespeicherpack (2) zugeordneten ersten Gleichspannungswandlers (4) und eines dem zweiten Energiespeicherpack (3) zugeordneten zweiten Gleichspannungswandlers (5) zur relativen Änderung der Ladezustände.
Resumen de: DE102024109089A1
Es werden ein elektrisches System und ein Betriebsverfahren offenbart. Das elektrische System kann ein Energiespeicher sein, der eine Last betreibt. Ein Batteriepack versorgt das elektrische System mit Strom. Ein Prozessor bestimmt ein Modell eines Leistungsplans des elektrischen Systems, bestimmt unter Verwendung des Modells eine Prüfzeit während des Betriebs des elektrischen Systems, um einen Parameter zu ermitteln, der zur Berechnung der Kapazität des Batteriepacks geeignet ist, ermittelt den Parameter des Batteriepacks zu der Prüfzeit, berechnet die Kapazität des Batteriepacks unter Verwendung des Parameters und betreibt das elektrische System auf der Grundlage der berechneten Kapazität.
Resumen de: WO2025163548A1
An apparatus for packaging electrochemical cells (1) for the production of batteries, comprises a flattening device (20), configured to flatten an axial end (7, 8) of a coil (3) formed by a plurality of conductor tapes and separator tapes wound in a spiral. The flattening device (20) comprises a head (22) configured to abut at least one tab (5, 6) of the conductor tapes protruding from the axial end (7, 8) and fold it on the axial end. The head (22) includes a recess (23) and a plurality of blades (24) arranged perimetrically around the recess (23) and displaceable between an open configuration, wherein the blades (24) are distanced from a central axis (Z) of the recess (23), and a closed configuration, wherein the blades (24) are brought closer to the central axis (Z) of the recess (23), so as to abut the tab (5, 6) and fold it towards the axial end (7, 8) of the coil (3).
Resumen de: WO2025163547A1
An apparatus for packaging electrochemical cells (1) (2) for the production of batteries, comprises an application unit (20), configured to fasten at least one electrical collector (4) to an axial end of an internal assembly (3) of an electrochemical cell. The application unit (20) comprises: - a wheel (21) provided with respective gripping members (23) for retaining the internal assembly (3), - a flattening station (24), configured to flatten, on an axial end of the internal assembly, at least one tab (5a, 6a) of a conductor element (5, 6) of the internal assembly while the latter is retained on the wheel (21), - a positioning station (25), located downstream of the flattening station (24), configured to position the electric collector (4) on the axial end of the internal assembly (3) while the latter is retained on the wheel (21), and - a fastening station (26), placed downstream of the positioning station (25), configured to fasten the electric collector (4) to the end of the internal assembly (3) while the latter (3) is retained on the wheel (21).
Resumen de: WO2025163545A1
An apparatus (1) for packaging electrochemical cells (2) for the production of batteries, comprises a coupling unit (10), configured to combine a plurality of conductor elements (5, 6) and separator elements (7) in a predefined structure so as to form an internal assembly (3) of an electrochemical cell (2), as well as an application unit (20), configured to fasten at least one electrical collector (4) to an axial end of the internal assembly (3) so as to form a pole of the electrochemical cell (2), wherein the application unit (10) and the coupling unit (20) are synchronised with each other.
Resumen de: WO2025166151A1
A battery unit includes a unit housing enclosing a plurality of battery cells. To mitigate thermal risks and improve safety, the unit can include at least one thermal barrier arranged between the battery cells. The battery unit can also include a thermal barrier retainer arranged to protrude against a thermal barrier and secure the thermal barrier in place relative to the unit housing. Such a thermal barrier retainer can include sharp protrusions, gripping texture, or binding strips for engaging the thermal barrier.
Resumen de: US2025253309A1
An electrode for a secondary battery including a current collector, and at least one electrode material mixture layer on a surface of the current collector, the electrode material mixture layer including a negative electrode active material, a conductive agent, and a binder wherein, the electrode has a property such that in a regression curve obtained by regression analysis of shear strength data according to a cutting depth which are measured while obliquely cutting the electrode material mixture layer from a surface thereof until reaching the current collector using a surface and interfacial cutting analysis system (SAICAS), a ratio of a maximum value (σmax) to a minimum value (σmin) of shear strength is 1.7 or less.
Resumen de: US2025253305A1
Provided is a manufacturing method of an electrode layer, including a step A of measuring a surface shape of a transport member, a step B of placing a collector foil on the transport member after the surface shape is measured, and transporting the collector foil by moving the transport member, a step C of supplying, onto the transported collector foil, an electrode active material containing an electrode active material, a conductive auxiliary agent, and an electrolytic solution, and a step D of passing the electrode material supplied onto the collector foil through a gap formed between the transport member and a distal end of a film forming member which is disposed at a position spaced apart from a surface of the transport member to regulate a thickness of the electrode material and form an electrode material film, in which, in the step D, a disposing position of the film forming member is controlled based on measurement information of the surface shape of the transport member, which is obtained in the step A.
Resumen de: US2025253332A1
The present invention provides a rechargeable battery comprising a cathode comprising metal hexacyanometalate or hydrates thereof, or metal-doped metal hexacyanometalate or hydrates thereof, and glucose oxidase (GOx); and an anode comprising a self-reducing polymer. The present invention further provides a smart contact lens integrated with said rechargeable battery.
Resumen de: US2025253329A1
A positive electrode plate includes a positive current collector and a positive electrode film layer. The positive electrode film layer is disposed on at least one surface of the positive current collector. The positive electrode film layer includes a first positive electrode film layer and a second positive electrode film layer. The first positive electrode film layer is located between the positive current collector and the second positive electrode film layer. The first positive electrode film layer includes a first positive active material. A specific surface area of the first positive active material is 12 m2/g to 16 m2/g. The second positive electrode film layer includes a second positive active material. A specific surface area of the second positive active material is 6 m2/g to 19 m2/g.
Resumen de: US2025253324A1
A negative electrode active material includes a silicon-based active material having a crystal grain size of about 300 nm or less. The silicon-based active material has a value of about 2.00 or less as defined by Equation 1 below. The silicon-based active material includes SiOx (x=0) and at least one selected from SiOx (0
Resumen de: DE102024102940A1
Die Erfindung betrifft ein Scannersystem zum paarweise Testen von zumindest zwei Batteriestacks. Das Scannersystem umfasst eine Zuführlinie zum Zuführen von zumindest zwei Batteriestacks in einen X-Ray-Scanner zum Durchführen zumindest einer Bildaufnahme. Die Bildaufnahme zeigt einen Bildaufnahmebereich. Vor dem X-Ray-Scanner ist ein erster Manipulator zum Verfahren des ersten Batteriestacks oder des zweiten Batteriestacks angeordnet. Nach dem X-Ray-Scanner ist ein zweiter Manipulator zum Verfahren des ersten Batteriestacks oder des zweiten Batteriestacks angeordnet. Durch die Manipulatoren können der erste Batteriestack sowie der zweite Batteriestack im Bildaufnahmebereich des X-Ray-Scanners positioniert werden. Das Scannersystem umfasst eine Entnahmelinie zum Abfahren von zumindest einem der zumindest zwei Batteriestacks. Die Zuführlinie umfasst einen ersten Drehtisch und die Entnahmelinie umfasst einen zweiten Drehtisch. Die Drehtische sind dazu ausgebildet, den ersten Batteriestack, alternativ oder ergänzend den zweiten Batteriestack zu drehen.
Nº publicación: WO2025161107A1 07/08/2025
Solicitante:
SUZHOU INST OF NANO TECH AND NANO BIONICS SINANO CHINESE ACADEMY OF SCIENCES [CN]
\u4E2D\u56FD\u79D1\u5B66\u9662\u82CF\u5DDE\u7EB3\u7C73\u6280\u672F\u4E0E\u7EB3\u7C73\u4EFF\u751F\u7814\u7A76\u6240
Resumen de: WO2025161107A1
A non-aqueous organic high-voltage electrolyte and a lithium-ion battery comprising same. The non-aqueous organic high-voltage electrolyte comprises a lithium salt and a non-aqueous organic solvent. The non-aqueous organic solvent comprises a sulfolane derivative and a diluent, and the sulfolane derivative has the structure shown in formula (1). The non-aqueous organic high-voltage electrolyte exhibits high-voltage resistance, so that lithium-ion batteries using the electrolyte have excellent high-voltage cycle performance. The electrolyte is compatible with all currently known high-voltage positive electrode active materials and has flame-retardant properties, preventing potential combustion risks of the electrolyte while ensuring stable high-voltage charge-discharge cycling.