Resumen de: WO2025135428A1
The present technology relates to a water electrolysis system having a power supply control function capable of protecting a water electrolysis stack from instability of renewable energy power. The water electrolysis system comprises: a renewable energy production device for producing renewable energy; a renewable energy storage device for storing the produced renewable energy; a water electrolysis device for electrolyzing water by using at least one of the renewable energy and stored energy supplied from the renewable energy storage device; a gas storage device for storing gas produced by electrolysis in the water electrolysis device; and a power supply control device which controls power supply to the water electrolysis device so as to, if a gradient of power change of the renewable energy is greater than a preset power increase reference gradient, charge the renewable energy storage device by distributing at least a portion of the renewable energy, and if the gradient of power change of the renewable energy is less than a preset power decrease reference gradient, supplement the renewable energy by distributing at least a portion of the stored energy of the renewable energy storage device.
Resumen de: KR20250094789A
본 발명은 수전해 시스템의 수명 예측 방법 및 장치에 관한 것이다. 본 발명에 따른 수전해 시스템의 수명 예측 방법은, 수전해 시스템에 설치된 센서들을 통해 측정된 과거의 각 시계열 데이터를 수집하는 단계; 인공신경망 모델을 이용하여 과거의 각 시계열 데이터로부터 수전해 스택의 성능 데이터를 산출하는 단계; 수전해 스택의 산출된 성능 데이터를 실제 성능 데이터와 비교하여 오차 값을 구하는 단계; 및 오차 값을 이용하여 인공신경망 모델의 파라미터를 조정하는 단계를 포함할 수 있다.
Resumen de: AU2023284373A1
The present invention relates to the technical field of hydrogen energy power generation, and provided is a hydrogen energy uninterruptible power system. Said system comprises a hydrogen production unit, a power storage unit, a power generation apparatus, and a control unit, wherein the hydrogen production unit is able to utilize electrolysis to prepare hydrogen and oxygen gases; the power storage unit can supply power to the hydrogen production unit, and can output power to the outside; the power generation apparatus can receive the hydrogen and oxygen gases output by the hydrogen production unit and generate power, and the power generation apparatus can output power to the outside or transfer power to the power storage unit; and the control unit communicates with the hydrogen production unit, the power storage unit, and the power generation apparatus by means of electrical signals.
Resumen de: CN119403758A
A process for dissociating ammonia into a dissociated hydrogen/nitrogen stream in a catalyst tube within a radiant tube furnace and an adiabatic or isothermal unit containing a catalyst, and a downstream purification process unit for purifying the dissociated hydrogen/nitrogen stream into a high purity hydrogen product.
Resumen de: JP2025095274A
【課題】予備処理を行わなくてもアルカリ水電解時の耐久性(耐金属溶出性)を確保することが可能なアルカリ水電解装置用部材を与える省Ni型のアルカリ水電解装置用ステンレス鋼材を提供する。【解決手段】質量基準で、C:0.100%以下、Si:1.00%以下、Mn:3.00~12.00%、Ni:7.00~9.00%、P:0.0030%以下、S:0.0030%以下、Cr:10.0~18.0%、N:0.01~0.25%、Cu:0.01~1.00%、Mo:0.01~1.00%、Al:0.005~0.080%、B:0.0001~0.0100%、Ca:0.0005~0.0100%、O:0.0100%以下を含み、残部がFe及び不純物からなるアルカリ水電解装置用ステンレス鋼材とする。【選択図】なし
Resumen de: WO2025135740A1
The present invention relates to a device for producing hydrogen from ammonia for a ship. According to the present invention, high-pressure hydrogen can be produced by using liquefied ammonia for a ship, and hydrogen can be economically produced by utilizing unconverted ammonia discharged from a decomposition reactor and off-gas discharged from a pressure swing adsorption device as a heat source for ammonia decomposition through a heat exchange network of the ship.
Resumen de: WO2025135743A1
The present invention provides a water electrolysis stack assembly and a hot box apparatus. In an embodiment, provided is a water electrolysis stack assembly including: a case including an upper surface part, a side surface part, and a gas outflow pipe formed in the side surface part; and a stack accommodated in an inner space of the case, wherein a surface pressure is applied to the stack by the upper surface part of the case.
Resumen de: WO2025135742A1
A control method of a high-temperature water electrolysis system, according to a first embodiment of the present invention, comprises the steps of: determining an operating temperature of a solid oxide water electrolysis stack in a high-temperature water electrolysis system including the solid oxide water electrolysis stack; selecting an operation mode of the solid oxide water electrolysis stack by comparing the operating temperature with a supply temperature of gas supplied to the solid oxide water electrolysis stack; determining a target voltage applied to the solid oxide water electrolysis stack according to the operation mode of the solid oxide water electrolysis stack; and applying the target voltage applied to the solid oxide water electrolysis stack in a step-up manner according to the operation mode of the solid oxide water electrolysis stack.
Resumen de: WO2025135726A1
The present invention provides a hydrogen vent system for discharging hydrogen generated in a high-temperature water electrolysis stack to the outside, comprising: a first pipe unit connected to the high-temperature water electrolysis stack and having a curved portion; a drain line which is connected to the first pipe unit and through which condensed water is drained; and a discharge unit which is connected to the first pipe unit and which releases hydrogen upward into the air, wherein a surge tank that maintains pressure and moves the condensed water to the drain line is disposed in the first pipe unit.
Resumen de: WO2025135328A1
The present invention relates to a water electrolysis system comprising: a hydrogen (H2) removal device; and an oxygen (O2) removal device, wherein the hydrogen (H2) removal device removes, from an oxygen (O2) stream, hydrogen (H2), and the oxygen (O2) removal device removes, from a hydrogen (H2) stream, oxygen (O2). By removing hydrogen (H2) and oxygen (O2) from the respective gas streams, the likelihood of explosion accidents during the movement of the gas streams is remarkably reduced, and the purity requirements of various industrial gases can be satisfied without a separate purification process.
Resumen de: WO2025135348A1
The present disclosure relates to a method for preparing a catalyst for an oxygen evolution reaction in a water electrolysis cell, and a water electrolysis cell membrane-electrode assembly and a water electrolysis cell, which comprise the catalyst prepared using same, and the method for preparing a catalyst for an oxygen evolution reaction in a water electrolysis cell comprises preparing a plurality of noble metal oxide seeds, and preparing a noble metal oxide aggregate by using the plurality of noble metal oxide seeds, thereby increasing the surface area thereof by means of pores between noble metal oxide particles, and thus performance and durability can be improved.
Resumen de: WO2025137083A1
An electrolyzer for gaseous production such as hydrogen gas includes an oscillating electrode driven at a natural frequency of the gaseous bubbles improves output by readily removing the gaseous bubble product from the electrode surface, thereby exposing greater electrode surface area for subsequent electrolysis reactions. A natural frequency of the gaseous product determines an oscillation frequency with which to drive the electrode accumulating the gaseous product, such as hydrogen bubbles, to agitate and release the bubbles which then rise to the surface of the liquid filled containment. Integrating oscillation logic for agitating the otherwise stationary electrode or cathode in a PEM water electrolyzer improves hydrogen production by readily evacuating the generated hydrogen to free up the electrode area for additional electrolysis reactions.
Resumen de: WO2025135565A1
The present invention relates to a composite water electrolysis system using nuclear power plant heat and electrical energy, and, to a composite water electrolysis system for receiving heat energy and electrical energy generated in each of a plurality of SMRs, the system comprising: a heat energy storage hub for storing the heat energy generated in each of the plurality of SMRs; an electrical energy storage hub for storing electrical energy generated in each of the plurality of SMRs; and a composite hydrogen production unit, which receives heat and electricity from the heat energy storage hub and the electrical energy storage hub so as to generate hydrogen and oxygen. According to one embodiment, technologies such as hydrogen production through high-temperature water electrolysis, low-temperature water electrolysis, and ammonia decomposition are diversified, hydrogen and oxygen produced through high-temperature water electrolysis are in a high-temperature state, and the waste heat energy discarded when hydrogen and oxygen are cooled to a low temperature in order to be stored can be used as an additional heat source of low-temperature water electrolysis and ammonia hydrogen decomposition devices.
Resumen de: WO2025135512A1
The present disclosure relates to: a catalyst for an oxygen evolution reaction of a water electrolysis cell; a method for manufacturing same; and a membrane-electrode assembly for a water electrolysis cell, and a water electrolysis cell, comprising same. More specifically, by manufacturing a catalyst for oxygen evolution reaction of a water electrolysis cell, having a structure in which active particles fill pores between nanoparticles of a carrier assembly manufactured in various forms or penetrate into the carrier assembly while being supported by the carrier assembly, performance is improved while reducing the amount of noble metal used. The active particles have stronger bonds than a form in which active particles are simply supported, and thus the active particles and the carrier assembly can have improved durability.
Resumen de: WO2025135513A1
The present disclosure relates to a catalyst for an oxygen evolution reaction of a water electrolysis cell, a manufacturing method therefor, a membrane-electrode assembly for a water electrolysis cell including same, and a water electrolysis cell. The catalyst for the oxygen evolution reaction of a water electrolysis cell includes a heterogeneous noble metal composite which has a nanowire shape and includes different first and second noble metal oxides in a node structure, whereby the catalyst can reduce the amount of the noble metals used while improving performance and can enhance performance and durability depending on the types and lengths of the noble metals forming the heterogeneous noble metal composite.
Resumen de: WO2025135428A1
The present technology relates to a water electrolysis system having a power supply control function capable of protecting a water electrolysis stack from instability of renewable energy power. The water electrolysis system comprises: a renewable energy production device for producing renewable energy; a renewable energy storage device for storing the produced renewable energy; a water electrolysis device for electrolyzing water by using at least one of the renewable energy and stored energy supplied from the renewable energy storage device; a gas storage device for storing gas produced by electrolysis in the water electrolysis device; and a power supply control device which controls power supply to the water electrolysis device so as to, if a gradient of power change of the renewable energy is greater than a preset power increase reference gradient, charge the renewable energy storage device by distributing at least a portion of the renewable energy, and if the gradient of power change of the renewable energy is less than a preset power decrease reference gradient, supplement the renewable energy by distributing at least a portion of the stored energy of the renewable energy storage device.
Resumen de: WO2025133594A1
An energy system (100) for supplying electricity to a load (108) and a method of using said system are provided, the system comprising renewable electricity generation capacity (102) comprising solar and wind generation capacity, a battery (110) with a maximum electricity storage capacity sufficient to meet the mean load for up to 1 hr, an electrolyser (112) configured for hydrogen gas production and capable of operating at from 0.3 to 0.8 times the maximum output of the renewable electricity generation capacity; and gas storage (114) configured to receive the hydrogen gas; wherein the renewable electricity generation capacity is in electrical communication with the electrolyser via the battery and wherein the system is configured to allow electrical communication to the load such that electrical output not consumed by the load is used to generate hydrogen gas.
Resumen de: WO2025132918A1
Disclosed is an electrolysis cell element (1) comprising, a support structure (2) comprising an inner aperture (3), and a bipolar plate (4) being suspended in the inner aperture (3). The support structure (2) comprises a structure core (5) and a coating (6), wherein the coating (6) includes a thermoplastic material at least partly enclosing the structure core (5) and wherein the bipolar plate (4) is suspended in the inner aperture (3) by means of the coating (6). An electrolysis cell stack (10) and use of an electrolysis cell stack (10) is also disclosed.
Resumen de: WO2025132855A1
A separator for alkaline water electrolysis comprising: - a porous support (100) and on at least one side of the support, in order: - an optional porous layer including a Polymer A (200), and - a non-porous layer including a Polymer B (300), characterized in that the separator is obtainable by coating on the porous support (100) or the optional porous layer (200) a Polymer B solution having a viscosity of at least 400 mPa.s, measured at 20°C and a shear rate of 100 s-1, and wherein the separator has a Bubble Point, measured according to ASTM F316, of at least 5 bar.
Resumen de: WO2025132806A1
A catalyst coated separator for alkaline water electrolysis (1) comprising a porous support (100) and on at least side of the support, in order: - an optional porous polymer layer (200), - a non-porous alkali-stable polymer layer (300), and - a catalyst layer (400).
Resumen de: WO2025132521A1
The present invention refers to an electrochemical system comprising: i. an electrolyte, preferably a liquid electrolyte, more preferably an aqueous electrolyte, comprising a stabilizing anion, wherein said electrolyte comprises > 10 mol/mol % of water; ii. a redox mediator electrode comprising Ga(0) or alloys thereof; iii. a cathode; iv. an anode; and v. a wavefunction generator to alternately polarize the electrical connection between the redox mediator electrode and the cathode or anode; wherein the redox mediator electrode is electrically connected with the cathode and the anode, provided that the anode and the cathode are not electrically connected with each other. The gallium-based redox mediator electrode permits the nearly complete reversibility between dissolution and electroplating of gallium, thus cathodic and anodic reactions can be carried out in an alternating manner by electrically connecting the redox mediator electrode with the cathode or the anode. The present invention also refers to a method for the electrochemical production of H2, and oxidized species, such as O2 and/or Cl2 or H+, with the electrochemical system of the invention. Therefore, the present invention may find application in fuel production, e.g. in combination with fuel cells or internal combustion engines, or in chemical reactions such as hydrogenation reactions, reversible H2 production and H2 oxidation, hydrotreating reactions, hydrocracking reactions, hydroisomerisation reactions, oil
Resumen de: WO2025132418A1
The invention relates to a water electrolysis installation (P) comprising a plurality of electrolysis clusters (Ci) operated at respective electrical power setpoints (Pi k). The installation comprises and a supervision unit (SU) for operating the installation (P) according to an electrical network flexibility signal (FSk), the supervision unit (SU) comprising a modulation controller (MOD) for modulating synchronously the electrical power drawn by the installation (P) from an electrical network (NET) according to a preset arrangement, a priority sequencer (SEQ) to establish the preset arrangement asynchronously to the modulation controller (MOD), and a regulator module (REG) to regulate the actual power (Pk) drawn by the installation.
Resumen de: WO2025132365A1
The invention relates to a device/method for capturing/converting CO2, comprising/using a CO2 capturing unit (2), a water electrolysis unit (5), an RWGS unit (8), an FT unit (13), a unit for converting by-products into syngas (28) and a hydrogen unit (20), in which a carbon dioxide separation unit (34) is arranged to: treat a first syngas (12) and a second syngas (29); produce a gaseous effluent depleted in carbon dioxide (18) and a gaseous effluent rich in carbon dioxide (35); and recycling the gaseous effluent rich in carbon dioxide (35) to the inlet of the RWGS section (8).
Resumen de: WO2025131874A1
The invention relates to a system (120) consisting of at least two catalyzers (100), in particular for use in electrochemical cell devices (10), preferably fuel cell devices (10), wherein the at least two catalyzers (100) are fluidically connected in series, and each of the at least two catalyzers (100) has a catalytically active material (108), each of which is provided on a main part (102). At least one first catalyzer (100a), which is arranged first in the flow direction, has a protective material (110), which is designed to bind chromium and is provided on the main part (102). According to the invention, the first catalyzer (100a) is designed to oxidize hydrogen, and a second catalyzer (100b), which is arranged after the first catalyzer (100a) in the flow direction, is designed to oxidize methane.
Nº publicación: WO2025131721A1 26/06/2025
Solicitante:
SUNFIRE GMBH [DE]
SUNFIRE GMBH
Resumen de: WO2025131721A1
The invention relates to a method for producing an electrolysis assembly comprising at least one housing with an interior, and with at least one stack assembly disposed in the interior of the housing, the stack assembly comprising a plurality of electrolytic cells stacked in a stacking direction, at least some of the electrolytic cells each comprising a membrane electrode assembly and an interconnector, and the membrane electrode assembly and the interconnector each having an oxygen side and a hydrogen side, wherein, in a preparation step for producing membrane electrode assemblies, at least one pasty layer is applied to each of the two surfaces of an electrolyte membrane, at least one of the layers on one surface being used to form a first electrode formed on the hydrogen side of the membrane electrode assemblies and at least one of the layers on the other surface being used to form a second electrode formed on the oxygen side of the membrane electrode assemblies, in a preparation step a seal material comprising glass and/or glass-ceramic is applied to the interconnectors, in an assembling step the prepared interconnectors and membrane electrode assemblies are stacked in alternation to form a stack, and in an assembling step the stack is joined under the action of thermal energy and of a mechanical clamping force which is applied to the stack inwardly in the stacking direction.