Resumen de: CN119983864A
本发明提供了一种地热储热智能监控换热装置,包括外管和内管;所述外管包括直立段和锥形段,锥形段自上向下收口;在锥形段内设有封堵;所述封堵为球形,包括壳体,在壳体上开设有通孔,通孔内设有配重块;所述配重块与壳体的内侧面通过弹性件A连接,且配重块的尺寸小于锥形段下端口的尺寸;当配重块置于通孔内时,封堵呈球形,此时弹性件A为压缩状态;所述配重块的侧面设有凹槽,凹槽内转动安装有挡条;在内管的侧面上设有流通口和拦截网,拦截网位于流通口周围,且拦截网能够转动。该换热装置具有设计合理、实用性强、使用寿命长的优点。使用该换热装置,能够降低井底环境变化对换热器影响,保证地热储热的利用率。
Resumen de: CN119983883A
本发明提供一种地热储热强化换热装置,主要涉及地热能源采集设备技术领域。一种地热储热强化换热装置,包括上水箱及与其对称设置的下水箱;所述上水箱与下水箱之间固定安装有若干均匀分布的换热管,所述上水箱与下水箱通过换热管连通,所述上水箱的顶面固定连通有进液管,所述下水箱的底部固定连通有出液管,所述上水箱与下水箱之间设有刮板,所述刮板通过升降组件带动其移动,所述换热管均竖向贯穿刮板且与其滑动配合。本发明的有益效果在于:本装置通过设置多个均匀分布的换热管,显著增大了换热面积,从而提高了热交换效率,刮板能够在步进电机的驱动下精确升降,有效清除换热管表面附着的杂质,避免了杂质对换热效率的不良影响。
Resumen de: CN119958120A
本发明公开一种地热式高效能废弃矿井埋设管道压缩空气储能系统,包括:储气管、地热补热管、换气管、气体驱动泵、第一控制阀门和第二控制阀门。所述储气管水平布置在废弃矿井的水平巷道中,且该储气管的进气端和空气压缩机连接,排气端和发电机连接;所述地热补热管竖向设置在所述水平巷道下方的地热层中,且所述地热补热管的两端分别与所述储气管的两端连通。所述换气管的上、下两端均与地热补热管的上部连通,所述气体驱动泵设置在换气管上。所述第一控制阀门设置在换气管上,所述第二控制阀门设置在地热补热管上且位于换气管的上、下两端之间的部位。本发明的上述储能系统能够有效弥补管道内压缩空气的能量损失,克服电能损耗的问题。
Resumen de: CN119958121A
本发明涉及地热资源的开采利用领域,尤其涉及一种适用于地热的换热结构,以解决现有方法取热水与地层地热接触时间少,流动路径短,存在取热水无法全面吸收热能返回地面的问题。本方案包括套管、保温管、换热器和水泵;套管设置于地层内;保温管设置于套管内部;保温管下部设置有扰流模块;套管与扰流模块之间空腔组成扰流区域;水泵驱动流体流向套管内,然后流向扰流区域,扰流区域内的流体流经扰流模块后形成紊流态经保温管回流至换热器。通过扰流区域延长了取热水在地层中的流动时间,使取热水与地热能能够进行充分的热量交换,从而提高取热水的升温效率,使返回至地面的取热水温度更高。
Resumen de: KR20250064146A
본 발명은 지중구조물의 시공을 위한 굴착영역(A)을 확보하기 위하여, 전열 흙막이부재(101)를 지지하도록 열지어 설치된 다수의 전열말뚝(100); 상기 다수의 전열말뚝(100)에 폭방향을 따라 설치된 전열띠장(110); 상기 다수의 전열말뚝(100)의 후방에 열지어 설치된 다수의 후열말뚝(200); 상기 다수의 후열말뚝(200)에 폭방향을 따라 설치된 후열띠장(210); 전단이 상기 전열말뚝(100)에 결합하고, 후단이 상기 후열말뚝(200) 또는 후열띠장(210)에 결합함과 아울러, 긴장된 상태에서 정착장치에 의해 정착된 긴장재(300);를 포함하고, 상기 긴장재(300)는, 하단이 상기 전열말뚝(100)의 중앙부 또는 하단에 결합하고, 상단에 절곡부(302)가 형성된 수직부(301); 상기 절곡부(302)에서 후방으로 연장형성되고, 후단이 상기 후열말뚝(200) 또는 후열띠장(210)에 결합한 연장부(303);를 포함하는 것을 특징으로 하는 절곡 구조의 긴장재가 설치된 절곡 구조의 긴장재가 설치된 프리스트레스트 2열 흙막이 구조물을 제시함으로써, 굴착공사의 진행에 따른 배후토사의 토압 증가에 대하여 효과적으로 대응할 수 있도록 한다.
Resumen de: KR20250064147A
본 발명은 지중구조물의 시공을 위한 굴착영역(A)을 확보하기 위하여, 전열 흙막이부재(101)를 지지하도록 열지어 설치된 다수의 전열말뚝(100); 상기 다수의 전열말뚝(100)의 후방에 열지어 설치된 다수의 후열말뚝(200); 상기 다수의 전열말뚝(100)과 상기 다수의 후열말뚝(200)의 사이의 굴착에 의해 형성되고, 상기 굴착영역(A)의 저면보다 높은 위치에 저면이 형성된 내부 굴착부(B); 상기 다수의 전열말뚝(100)의 전방 또는 후방에 폭방향을 따라 설치된 전열띠장(110); 상기 다수의 후열말뚝(200)의 전방 또는 후방에 폭방향을 따라 설치된 후열띠장(210); 전단이 상기 전열말뚝(100) 또는 전열띠장(110)에 결합하고, 후단이 상기 후열말뚝(200) 또는 후열띠장(210)에 결합함과 아울러, 긴장된 상태에서 정착장치에 의해 정착된 긴장재(300); 상기 긴장재(300)가 정착된 상태에서, 상기 긴장재(300)에 작용하는 하중이 분산되도록, 전단이 상기 전열말뚝(100) 또는 전열띠장(110)에 결합하고, 후단이 상기 후열말뚝(200) 또는 후열띠장(210)에 결합한 보조연결재(400);를 포함하고, 상기 긴장재(300)의 전단은 상기 내부 굴착부(B)의 상부로서, 배후토사의 높이보다 낮은 위치에 설치된 것을 특징으로 하는 내부 굴착부를 구비한 프리스트레스트 2열 흙막이 구조물�
Resumen de: CN119957288A
本发明公开了基于地源热泵的电缆隧道空气冷却系统及控制方法,热泵机组与地埋式换热器之间的供介质管道通过第一三通阀与风冷式冷却塔的热交换介质输出管道连接;热泵机组与地埋式换热器之间的回介质管道通过第二三通阀与风冷式冷却塔的热交换介质输入管道连接。工作时,通过第一三通阀和第二三通阀切换供冷模式和补冷模式;供冷模式中,地埋式换热器从电缆隧道外层恒温土壤层中获取冷量,输送至电缆隧道内给热空气降温;补冷模式中,风冷式冷却塔从室外低温空气中获取冷量,输送至地埋式换热器中,给电缆隧道外层恒温土壤补充冷量。本发明使电缆隧道空气冷却系统在满足冷却隧道空气要求的同时,还能降低隧道降温能耗。
Resumen de: CN119957074A
本发明公开一种适用于复杂地质环境的深层地热钻探装置,涉及地质钻探技术领域,包括支撑板,支撑板顶面固接有驱动组件,驱动组件上安装有钻杆,支撑板上开设有通孔,钻杆底部穿过通孔且可拆卸连接有钻头,钻杆内设置有中心柱,中心柱与钻杆内壁之间形成容纳腔,中心柱沿轴向等间隔设置有若干调节组件,调节组件周向固接有若干缓冲弹簧,缓冲弹簧远离调节组件的一端固接有垫板,垫板与钻杆内壁固接,容纳腔内安装有旋转组件,旋转组件与调节组件传动连接,支撑板底面四角分别固接有移动组件,移动组件与地面接触。本发明显著提高在复杂地质条件下的钻探效率和成功率,降低设备损坏率。
Resumen de: CN119962126A
本发明属于地热能开发技术领域,涉及一种中深层地埋管换热器保温材料敷设长度的设计方法,旨在优化保温材料敷设长度以提高换热效率并降低工程成本,具体包括:获取目标区域的地温场分布数据,计算地埋管外壁的热流分布;结合工质的比热容、质量流量以及系统设计参数,确定临界深度;通过数学建模优化保温材料的敷设长度,并引入工程经济系数进行动态调整;通过数值仿真验证设计结果;本发明能够科学量化地温梯度、热流密度、保温材料热阻和经济性之间的关系,实现热效率与施工成本的平衡,本发明适用于不同地质条件和中深层地埋管换热器系统设计,具有广泛的工程应用价值。
Resumen de: CN119959289A
本发明提供一种用于闭式循环采热的支撑剂导热性能评价装置与方法,该装置包括导热性能评价腔室,含裂缝岩体,压裂液与支撑剂入口、压裂液与支撑剂出口,加热片和应力加载装置,含裂缝岩体位于导热性能评价腔室中,压裂液与支撑剂入口和压裂液与支撑剂出口均具有多个,与该含裂缝岩体中裂缝对应连接,加热片位于该导热性能评价腔室中该含裂缝岩体放置的一侧,为支撑剂铺置后导热性能测试提供热源,应力加载装置位于该导热性能评价腔室中与裂缝面的垂直方向上,为裂缝闭合提供闭合应力。本发明掌握了导热支撑剂在裂缝内的运移规律以及导热支撑剂填充后各影响因素对岩体导热性能提升的影响规律,提出了最佳的闭式循环地热系统储层压裂改造方案。
Resumen de: MX2024009288A
A thermal reach enhanced geothermal wellbore is provided. The geothermal wellbore includes a wellbore extending from a topside surface to a target location in a formation. The geothermal wellbore further includes a plurality of fissures that distally extend from the target location into the formation and that are at least partially filled with a compacted high-thermal k material. The compacted high-thermal k material terminates on a proximal end at the target location of the wellbore and is thermally coupled to a high-thermal conductivity grout or slurry through which heat is conducted to a working fluid that is contained in a closed loop working fluid conduit embedded in the grout or slurry.
Resumen de: CN119957161A
本发明涉及新能源地热专业技术领域,具体而言,涉及一种砂岩热储地热井射孔布局方法、装置、设备及介质,所述方法包括:基于所述射孔枪弹类型、所述孔眼密度和所述套管尺寸绘制多种射孔分布模拟图;并基于每个射孔分布模拟图中相邻射孔的分布距离依次计算出每个射孔分布模拟图对应的分布均匀系数;基于每个射孔分布模拟图对应的所述分布距离和所述分布均匀系数,在多种不同射孔方位角的射孔分布模拟图中选择最优射孔方位角;本发明通过优化合理射孔相位,实现炮眼孔间距的最大化,避免相邻孔眼间的应力干扰和骨架的集中坍塌破坏,降低出砂程度;实现均匀性布孔,减小流体弯曲流线距离、降低流体能量损失,提高产液能力。
Resumen de: CN119959295A
本发明公开了一种氧化石墨烯复合固井材料导热性能测试方法,包括:基于不同的配比设置和成型养护条件,获取不同种类的氧化石墨烯复合固井材料样本;基于中深层地热井传热过程及其多场耦合关系,构建地热井热流固耦合的非稳态传热模型,并定量分析氧化石墨烯复合固井材料的热阻效应;基于变温变压养护条件下氧化石墨烯的外掺量、取向分布、水固比对导热性能的影响,建立导热性能模型;将不同种类样本的参数数据代入导热性能模型中,分析不同条件下氧化石墨烯复合固井材料的导热性能。本发明的优点在于:能更准确地模拟和预测材料在复杂环境下的传热行为,能够系统地分析氧化石墨烯复合固井材料在多种实际条件下的导热性能。
Resumen de: CN119957183A
本发明涉及一种用于页岩储层内钻孔充填式多尺度热致裂方法,属于油气田压裂技术领域,以提高页岩储层的裂缝网络复杂性及其渗透性。在套管壁上向层内径向钻孔,将携砂液与自生热剂混合,并充填入径向孔中;通过注入引发介质激发生热颗粒发生放热反应;放热反应使储层孔眼周围的岩石产生热激损伤,高压泵入冷流体,引起温度场剧变,形成水力‑热力‑应力‑化学效应的复合改造效应;重复岩石热激活和冷却过程,实现冷热疲劳改造,该技术可实现深穿透钻孔‑层内自生热‑水力压裂协同,主要作用机理包含热损伤增透岩石、高温高压弱酸气扩缝解堵增透、水力‑热力交变协同改造等,最终在井周200m范围内激励形成缝网+增渗基质的改造区。
Resumen de: CN119958122A
本发明公开的一种基于城市社区智慧能源停车库的储能及供暖系统,涉及地热采集系统技术领域,地热采集井的顶端处设有社区地热储能中心,竖井停车库包括车辆传送机构,车辆传送机构上设有多个停车板,社区地热储能中心处设有停车位,且社区地热储能中心处设有车辆入口,车辆入口与停车位之间设有车辆转移机构;换热机构包括换热循环回路,换热循环回路延伸至社区地热储能中心处,换热循环回路内填充有第一换热介质,且换热循环回路连通有第一循环泵;储能机构设置在社区地热储能中心内,并储存有第二换热介质,储能机构并联有多个供热循环管道,供热循环管道与待供热机构相连通,解决社区停车问题,并减少城市对传统能源的消耗。
Resumen de: CN119957982A
一种中深层地热能供热温度的控制系统,包括分别由中央控制系统控制的地热循环水泵、热泵、热网循环水泵、换热器、电加热装置和测温模块。设置输入的地热水的温度为Ta,热网循环水回水经热泵的热网水出口温度为Tc、经电加热装置的热网水出口的温度为Td,三者的温度由测温模块分别测量并将温度数据发送至中央控制系统,预设的热网循环水供水温度为Tb;Ta>Tb时,地热水与热网循环水回水利用换热器直接换热;Ta<Tb时,热网循环水回水与地热水通过热泵来换热,从热泵出来的热网循环水回水若温度未达到Tb,使用电加热装置对热网循环水回水继续加热,若温度达到Tb输送给用户。解决地热循环水温度受地热能影响大,热网循环水的供水温度波动大的问题。
Resumen de: CN119962161A
本发明属于地热钻井技术领域,涉及一种基于钻井液温度反馈的地温梯度确定方法,包括:步骤1、数据采集;步骤2、钻井液数值模型构建,模型包括:能量传递方程、热损失方程、局部热扰动方程,确保模型适用于不同工况;步骤3、地温梯度计算;步骤4、结果校正与优化;步骤5、输出结果;本发明通过在钻井过程中实时采集钻井液的进出口温度数据,结合热传导与对流耦合的热力学模型,计算各深度的岩土温度与地温梯度,通过数值迭代与误差修正,确保测量精度;本发明实现地温梯度的实时计算与可视化,提高工作效率,适用于地热资源勘探等相关地热能应用场景。
Resumen de: US2025143230A1
A multi-source ground-to-air heat transfer system is configured to store thermal energy during a cooling/dehumidification mode of operation for future use during a heating mode of operation. The multi-source ground-to-air heat transfer system utilizes a ground loop that is configured under an enclosure, such as a greenhouse, and is in thermal communication with a thermal reservoir medium to conduct and store heat. A thermal exchange fluid is pumped through the ground loop and ground heat exchanger and may receive heat from a condenser during a cooling/dehumidification mode of operation and may liberate heat to the evaporator during a heating mode. The enclosure air may receive heat from the heat pump during a heating mode and may liberate heat to the evaporator during a cooling/dehumidification mode. The heat exchange system may employ a heat pump having a reversing valve to change the mode of operation.
Resumen de: WO2025096412A1
Apparatus, system, and method for geothermally driven ammonia production. Hydrogen is generated using energy obtained from the underground magma reservoir and nitrogen is captured from air using the energy obtained from the underground magma reservoir. At least a portion of the generated hydrogen is combined with at least a portion of the generated nitrogen and heated at least to a reaction temperature using the energy obtained from the underground magma reservoir. The heated hydrogen contacts the heated nitrogen for a residence time to form the ammonia.
Resumen de: AU2025202691A1
A high-thermal conductivity grout composition is provided. The composition includes a grout mixture including a cementitious material, a retarder, and a high-thermal k material that advantageously can form a pumpable slurry upon admixture with water. The retarder is present in an amount effective that delays setting of the grout mixture at a target location having a geostatic target temperature of at least 300 °F for at least two hours. The high-thermal k material is present in an amount effective such that the grout mixture has, upon setting at the target location, a thermal conductivity of at least 1 W/m°K.
Resumen de: US2025146714A1
A method for controlling temperature maxima and minima from the heel to toe in geothermal well lateral sections. The method includes disposing at least a pair of wells proximately where thermal contact is possible. Working fluid is circulated in one well of the pair in one direction and the working fluid of the second well is circulated in as direction opposite. to the first. In this manner temperature equilibration is attainable to mitigate maxima and minima to result in a substantially more uniform temperature of the working fluids in respective wells and the rock formation area there between. Specific operating protocol is disclosed having regard to the temperature control for maximizing thermal energy recovery.
Resumen de: US2025146712A1
A highly flexible vertical ground tank system that can be installed to any depth. The principal focus is a hermetically sealed ground thermally conducting tank that can serve as a Ground Coupled Thermal Battery. The intention of this invention is to reduce the cost and/or impact of a Ground Heat Exchanger (GHEX) installation as well as to provide other benefits of building connected Thermal Batteries with heat pumps such as the time shifting of power drawn from the grid for powering the heat pumps, and for utilization of grid energy when cost are reduced to store thermal energy for future use. The same any depth ground installed tank can be used for many purposes.
Resumen de: US2025146713A1
Wellbore synthesis techniques are disclosed suitable for use in geothermal applications. Embodiments are provided where open hole drilled wellbores are sealed while drilling in sequenced operations with utilization of phase change materials to form an impervious layer at the wellbore/formation interface in high temperature applications. The techniques may be chemical, thermal, mechanical, biological and are fully intended to irreversibly damage the formation in terms of the permeability thereof. With the permeability negated, the wellbore may be used to create a closed loop surface to surface geothermal well operable in the absence of well casing for heat transfer surfaces for maximizing thermal transfer to a circulating working fluid. Formulations for the working and drilling fluids are disclosed.
Resumen de: US2025146387A1
A system may include a handling mast, a tubular source stack, a tubing loader, a spider device, and a connection device. The tubing loader is configured to capture a first HVT from the tubular source stack, load the first HVT into the handling mast, capture a second HVT from the tubular source stack, and load the second HVT into the handling mast. The spider device is configured to grasp the first HVT. The connection device is configured to align a proximal end of the first HVT and a distal end of the second HVT and couple the first HVT and the second HVT to form a tubing string. The handling mast is configured to insert the tubing string into the wellbore.
Nº publicación: US2025146154A1 08/05/2025
Solicitante:
DEEPH2 INC [CA]
DEEPH2 INC
Resumen de: US2025146154A1
A system and method for producing hydrogen wherein the system comprises at least one electrolyzer adapted to be located within a subterranean formation, at least one electrical supply cable having a length selected to extend from the at least one electrolyzer to a ground surface power supply, at least one supply tubing string having a length selected to extend from the at least one electrolyzer to a water supply at the ground surface and at least one collection tubing string having a length selected to extend from the at least one electrolyzer to a collection location at the ground surface. The method comprises providing a well from a surface to an underground formation, locating at least one electrolyzer in the well, supplying the at least one electrolyzer with supply electricity, supplying the at least one electrolyzer with supply water, producing hydrogen gas at the electrolyzer and collecting and transporting the produced hydrogen gas to the surface.