Resumen de: US2025304448A1
One aspect of the present disclosure relates to a nanocarbon composite including (i) a plurality of carbon nanotubes including semiconducting carbon nanotubes in an amount equal to or more than 67% by mass with respect to a total amount of the plurality of carbon nanotubes, and (ii) fibrous carbon nanohorn aggregates adsorbed to the carbon nanotubes, in which the number of the fibrous carbon nanohorn aggregates is equal to or less than one-tenth of the number of the plurality of carbon nanotubes.
Resumen de: CN120774412A
本发明公开了一种通过二氧化硅包覆来扩大碳纳米球介孔孔径的方法。该方法中,首先制备介孔酚醛树脂纳米球,然后在它表面包裹一层二氧化硅,碳化、去除二氧化硅,即可得到孔径较不包覆更大的碳纳米球材料。本发明方法步骤简单,易于操作,不改变材料的形貌和组成,孔径可以扩大4‑10倍,提供了一种新颖的扩孔方法。该材料作为电催化分解水析氧电极材料展现出了优异的活性和广阔的应用前景。
Resumen de: CN120772527A
本发明公开了一种制备多壁碳纳米管阵列催化剂的装置及方法,所述制备多壁碳纳米管阵列催化剂的装置包括第一容纳装置、第二容纳装置、以及第三容纳装置。第一容纳装置具有用于容纳高压的惰性气体的第一容纳腔,所述第一容纳腔上具有与其腔内连通的第一接口、以及第一连接接口,所述第一接口呈可选择开闭;第二容纳装置具有用于容纳含金属有机液体的第二容纳腔,所述第二容纳腔具有第二连接接口,所述第二连接接口呈可选择开闭;第三容纳装置具有用于容纳可溶于酸溶液的无机物粉末颗粒的第三容纳腔以及对所述第三容纳腔加热的加热装置,所述第三容纳腔上具有与其腔内连通的第二接口、以及第三连接接口,所述第二接口呈可选择开闭。
Resumen de: CN120774413A
本发明公开了一种单壁碳纳米管及其制备方法、及装置;所述装置包括催化剂输送单元、碳源输送单元、碳纳米管生长单元以及产物收集单元;催化剂输送单元用于以第一方向通入含环糊精@茂基金属客体超分子复合物的左侧气流,碳源输送单元用于以第二方向通入含碳源的右侧气流,第一方向气流和第二方向气流交汇最终形成指向产物收集单元的向上气流;本发明基于超分子组装实现了催化剂前体的可控释放,促进纳米级催化剂的均一形成,避免了混杂因素对催化剂形成的影响,通过解离、生长直至形成纳米级催化剂颗粒,然后与碳源气流交汇形成涡流迅速生成碳管,并且生成的碳管产物可及时排出,从而实现了碳管的连续化制备。
Resumen de: CN120784306A
本发明提供一种正极活性材料及其制备方法、正极片、电池。正极活性材料包括内核以及包覆于内核至少部分表面的壳层;内核包括LiMn1‑xFexMyPO4;其中,1‑x>0;x>0;y>0;M元素包括Mg、Ca、Sr、Co、Ti、Zr、Ni、Cr、Zn中的一种或多种元素;壳层包括碳元素、氮元素。本发明实施例的正极活性材料具有较好的电子和离子导电能力并且能够稳定正极活性材料中的Mn离子,有利于降低电池的阻抗,提高电池的容量、首次充电效率、容量保持率。
Resumen de: US2025316697A1
Example embodiments include low-resistance positive electrodes, and rechargeable lithium batteries including the same. The positive electrode includes a positive electrode current collector, and a positive electrode active material layer on the positive electrode current collector. The positive electrode active material layer includes a positive electrode active material in a concentration of about 95.5 wt % to about 99 wt %, a binder in a concentration of about 0.5 wt % to about 1.5 wt %, and a conductive material in a concentration of about 0.5 wt % to about 3 wt %. The conductive material includes nano-carbon particles and carbon nano-tubes. A weight ratio of the carbon nano-tubes to the nano-carbon particles is in a range of about 1.5 to about 3.5.
Resumen de: CN120774414A
本发明公开了一种单壁碳纳米管磁纯化方法及装置,通过高温氧化与梯度磁场技术协同作用实现高效纯化。该方法包括:在氮气与合成空气混合气氛中450℃热氧化预处理单壁碳纳米管,去除无定形碳并暴露金属杂质;将氧化后的单壁碳纳米管分散于1%脱氧胆酸钠或十二烷基苯磺酸钠溶液中;采用两阶段磁处理:第一阶段利用N48钕磁铁阵列旋转反应器去除强磁性杂质,第二阶段通过N42钕磁铁环形腔室进一步分离纳米管聚集体。装置包括反应腔室、磁铁阵列及电机系统,能耗低至15mW,金属杂质去除率>97%。本发明克服传统离心法高能耗及酸化法结构损伤的缺陷,适用于HiPco、CoMoCAT等多种工艺制备的单壁碳纳米管,兼具高效、环保及工业化应用潜力。
Resumen de: US2025316697A1
Example embodiments include low-resistance positive electrodes, and rechargeable lithium batteries including the same. The positive electrode includes a positive electrode current collector, and a positive electrode active material layer on the positive electrode current collector. The positive electrode active material layer includes a positive electrode active material in a concentration of about 95.5 wt % to about 99 wt %, a binder in a concentration of about 0.5 wt % to about 1.5 wt %, and a conductive material in a concentration of about 0.5 wt % to about 3 wt %. The conductive material includes nano-carbon particles and carbon nano-tubes. A weight ratio of the carbon nano-tubes to the nano-carbon particles is in a range of about 1.5 to about 3.5.
Resumen de: CN120757104A
本发明公开了一种微波辅助的没食子酸碳点的制备方法、碳点及其在肿瘤治疗中的应用,该方法包括以下步骤:S1、将没食子酸和精氨酸溶于超纯水中,混匀,得到混合液;S2、将混合液转移至反应釜中,在微波加热;S3、用纯水在超声条件下溶解步骤S2得到的产物,离心,上清液过滤,滤液透析,透析液冷冻干燥,得到没食子酸碳点。本发明公开了一种利用微波辅助法合成没食子酸碳点的方法,合成的碳点平均粒径小于2nm,具有毒性低、穿透能力强等优点,还能够显著抑制脑胶质瘤细胞的增殖和迁移,本发明将为开发基于碳点的新型脑胶质瘤治疗剂提供可行的新策略。
Resumen de: CN120757107A
本发明涉及石墨烯材料领域,具体是一种石墨烯浓缩浆料及其制备方法和应用。本发明基于小尺寸的石墨烯分散液得以浓缩得到高固含量的石墨烯浓缩浆料。高固含量的石墨烯浓缩浆料是一种剪切增稠液体,根据剪切增稠效应,浆料中的石墨烯微片与分散剂的长分子链之间会形成一定的网络结构,这种网络结构会阻碍液体的流动,使其粘度显著增加。由于石墨烯具有特殊的片状结构及分散剂具有很长的链式结构,一旦停止搅拌,虽然外力作用消失,但这种特殊的网络结构并未被破坏,因此浆料的粘度并不会降低,从而使得浆料保持很好的稳定性。以此方法制备出的石墨烯浓缩浆料具有石墨烯含量高、分散剂含量低、石墨烯尺寸小、稳定性高和不易沉降等特点。
Resumen de: WO2024173929A2
A catalyst, catalyst precursor, and carbon nanotubes grown using die catalyst. The catalyst includes a. support comprising alumina and a cobalt species on a surface of the support, wherein cobalt is the sole active catalyst species for carbon nanotube growth. The support surface is iron-free.
Resumen de: WO2025213023A1
Some aspects are generally related to electrocatalysts, for example, for use during electrocatalysis. In some embodiments, the electrocatalysts may be included in a system configured to perform electrocatalysis. For instance, a system may include an electrode that is associated with a first oligo- or polynucleotide and an electrocatalyst that is associated with a second oligo- or polynucleotide. According to some such embodiments, the first and second oligo- or polynucleotides may at least partially base pair and substantially tether the electrocatalyst to the electrode. In some cases, the electrocatalyst comprises nanoparticles comprising copper (Cu), which may be suitable to be configured in a system for the electrocatalytic reduction of carbon dioxide (CO2). Some aspects are related to electrocatalysts comprising copper nanoparticles having shapes and/or compositions that may desirably affect their electrocatalytic performance, for instance, the related faradaic efficiencies and/or product distributions obtained during electrocatalysis using the nanoparticles. Still other aspects are generally directed to related methods of making and/or using the electrocatalysts and/or systems.
Resumen de: WO2025213046A1
Some aspects are generally related to electrocatalysts, for example, for use during electrocatalysis. In some embodiments, the electrocatalysts may be included in a system configured to perform electrocatalysis. For instance, a system may include an electrode that is associated with a first oligo- or polynucleotide and an electrocatalyst that is associated with a second oligo- or polynucleotide. According to some such embodiments, the first and second oligo- or polynucleotides may at least partially base pair and substantially tether the electrocatalyst to the electrode. In some cases, the electrocatalyst comprises nanoparticles comprising copper (Cu), which may be suitable to be configured in a system for the electrocatalytic reduction of carbon dioxide (CO2). Some aspects are related to electrocatalysts comprising copper nanoparticles having shapes and/or compositions that may desirably affect their electrocatalytic performance, for instance, the related faradaic efficiencies and/or product distributions obtained during electrocatalysis using the nanoparticles. Still other aspects are generally directed to related methods of making and/or using the electrocatalysts and/or systems.
Resumen de: US2024026126A1
The present application is directed to novel discrete carbon nanotubes with a surface modification that disperses well in elastomers and crosslinks elastomers to the surface of the discrete carbon nanotubes, or in the vicinity of the discrete carbon nanotube surface. Significant improvements in the performance of elastomeric formulations with a plurality of discrete carbon nanotubes with a surface modification and silica and/or carbon black result, for example, improved abrasion resistance while at the same time providing a reduced hysteresis effect on cyclic deformation. These improved properties are highly desired for fuel efficient and longer wear life tire formulations.
Resumen de: CN119855784A
The present invention relates to a carbon nanotube dispersion comprising carbon nanotubes, a dispersant and a dispersion medium, in which the dispersant comprises a first dispersant and a second dispersant in a weight ratio of 100: 10 to 100: 90, the first dispersant being a dispersant containing N atoms, the second dispersant being a dispersant containing N atoms, and the dispersion medium being a dispersant containing N atoms. The second dispersant is a compound containing a sulfonic acid group, a hydroxyl group, and an aromatic ring in a molecular structure, and a weight ratio of the carbon nanotubes to the dispersant is 100: 50 to 100: 500, thereby having a low viscosity and a small change in viscosity over time.
Resumen de: AU2023467478A1
A method for preparing a modified carbon nanotube, a modified carbon nanotube, a negative electrode slurry, and a battery. The method comprises: carboxylating a carbon nanotube; placing the carboxylated carbon nanotube in a first mixed acid solution to obtain a first inner-wall carboxylated carbon nanotube; placing the first inner-wall carboxylated carbon nanotube in a second mixed acid solution to obtain a second inner-wall carboxylated carbon nanotube; and mixing the second inner-wall carboxylated carbon nanotube and polyethylene glycol to obtain a modified carbon nanotube.
Resumen de: US2025316697A1
Example embodiments include low-resistance positive electrodes, and rechargeable lithium batteries including the same. The positive electrode includes a positive electrode current collector, and a positive electrode active material layer on the positive electrode current collector. The positive electrode active material layer includes a positive electrode active material in a concentration of about 95.5 wt % to about 99 wt %, a binder in a concentration of about 0.5 wt % to about 1.5 wt %, and a conductive material in a concentration of about 0.5 wt % to about 3 wt %. The conductive material includes nano-carbon particles and carbon nano-tubes. A weight ratio of the carbon nano-tubes to the nano-carbon particles is in a range of about 1.5 to about 3.5.
Resumen de: US2025312753A1
A membrane including a polysulfone/polyethylene terephthalate (PSf/PET) support and an active layer on an outer surface of the PSf/PET support. The active layer comprises reacted units of a diacyl chloride compound, a tetra-amine compound, and a nanocomposite including graphitic carbon nitride and polypyrrole. The membrane of the present disclosure is self-cleaning following exposure to radiation and finds application in water decontamination and de-salination.
Resumen de: US2025312754A1
A membrane including a polysulfone/polyethylene terephthalate (PSf/PET) support and an active layer on an outer surface of the PSf/PET support. The active layer comprises reacted units of a diacyl chloride compound, a tetra-amine compound, and a nanocomposite including graphitic carbon nitride and polypyrrole. The membrane of the present disclosure is self-cleaning following exposure to radiation and finds application in water decontamination and de-salination.
Resumen de: US2025312751A1
A membrane including a polysulfone/polyethylene terephthalate (PSf/PET) support and an active layer on an outer surface of the PSf/PET support. The active layer comprises reacted units of a diacyl chloride compound, a tetra-amine compound, and a nanocomposite including graphitic carbon nitride and polypyrrole. The membrane of the present disclosure is self-cleaning following exposure to radiation and finds application in water decontamination and de-salination.
Resumen de: US2025312752A1
A membrane including a polysulfone/polyethylene terephthalate (PSf/PET) support and an active layer on an outer surface of the PSf/PET support. The active layer comprises reacted units of a diacyl chloride compound, a tetra-amine compound, and a nanocomposite including graphitic carbon nitride and polypyrrole. The membrane of the present disclosure is self-cleaning following exposure to radiation and finds application in water decontamination and de-salination.
Resumen de: US2025316707A1
The invention discloses a carbon-based composite material and its preparation method and application. The carbon-based composite material comprises the substrate, carbon film and structural carbon, and the carbon film or structural carbon contains alkali metal element or alkaline earth metal element. The alkali metal element or alkaline earth metal element is used as the catalyst to make the carbon source deposit the carbon film on the substrate surface and the structural carbon on the carbon film, and the substrate, carbon film and structural carbon are bonded together forming an integrated body without use of binder. The carbon film and structural carbon modify the substrate to generate the carbon-based composite material with a excellent property, and the property comprises one or more of any property of material. A use of the carbon-based composite material is any kind material in any technical field.
Resumen de: US2025313474A1
The present disclosure provides compositions and methods for dispersion of CNTs using a CNT solvent comprising an aromatic ring structure including at least one sulfonic acid functional group. Alternatively, the aromatic ring structure further includes at least a linear or branched alkyl chain. Examples of the carbon nanotube solvent includes dodecyl benzene sulfonic acid.
Nº publicación: EP4629347A1 08/10/2025
Solicitante:
SAMSUNG SDI CO LTD [KR]
SAMSUNG SDI CO., LTD
Resumen de: EP4629347A1
Example embodiments include low-resistance positive electrodes, and rechargeable lithium batteries including the same. The positive electrode includes a positive electrode current collector, and a positive electrode active material layer on the positive electrode current collector. The positive electrode active material layer includes a positive electrode active material in a concentration of about 95.5 wt% to about 99 wt%, a binder in a concentration of about 0.5 wt% to about 1.5 wt%, and a conductive material in a concentration of about 0.5 wt% to about 3 wt%. The conductive material includes nano-carbon particles and carbon nano-tubes. A weight ratio of the carbon nano-tubes to the nano-carbon particles is in a range of about 1.5 to about 3.5.