Resumen de: CN120208192A
本发明属于电池材料领域,公开了一种多孔炭材料具有类荷叶状结构。其制备方法:将生物质粉末与水混合后进行微波辅助水热反应,得到碳纳米点悬浮液;将碳纳米点悬浮液置于旋转冷冻设备中进行旋转冷冻,得到类荷叶状结构的多孔炭前驱体;将多孔炭前驱体在管式炉中煅烧,随后酸洗,得到具有类荷叶状结构的多孔炭材料。本发明的多孔炭材料具有类荷叶状结构,这种独特的结构通过微纳多孔网络和化学键连接,具备荷叶部分特征,如良好的应力分散能力;这种独特的结构为硅颗粒在充电过程中的体积膨胀提供了缓冲空间,能够有效分散应力,减少因体积膨胀导致的机械破坏,提高材料的循环稳定性。
Resumen de: WO2025135335A1
The present invention relates to a novel nanocomposite comprising reduced graphene oxide and LFO nanoparticles, and a metronidazole detection use thereof. The LFO/rGO nanocomposite of the present invention was prepared using a simple and eco-friendly method, and it has been identified that, compared to a conventional MTZ sensor, an electrode on which the nanocomposite prepared in this way is deposited can detect and quantify MTZ with a wider linear range, a lower detection limit and superior sensitivity, and thus the present invention can be used for detecting MTZ remaining in a biosample or a food sample.
Resumen de: WO2025133287A1
A method of producing carbon materials from one or more carbon- containing feedstock gases by melting one or more electrolytes inside a reactor chamber, adding from 0.03 wt% to 2 wt% catalyst of the total electrolyte mass at a dosage rate from 16.7 ppm hour-1 to 1100 ppm hour-1, providing one or more feedstock gases into the molten electrolyte in the reactor chamber with a flow rate comprising at least 4.2 standard cm3 min-1 A-1 mass equivalent of CO2, and applying a direct current density in the range from 100 A m-2 up to 20 000 A m-2 to one or more anodes and one or more cathodes.
Resumen de: WO2025136153A1
The invention relates to the chemical industry, and more particularly to technology for producing hydrogen and carbon nanofibres by the catalytic pyrolysis of light hydrocarbons, and can be used in various fields of activity (for example, the chemical industry, hydrogen energy production, and other industrial sectors). The technical result is an increase in the yield of hydrogen and of carbon nanomaterial in the form of carbon nanofibres. This technical result is achieved by the present solution to the problem of implementing a continuous process for producing hydrogen and carbon nanofibres in a device having a vertical reactor with a fluidized catalyst bed, where the continuous operation of the device is provided by a system for continuously supplying a catalyst and a system for discharging carbon nanofibres.
Resumen de: WO2025135335A1
The present invention relates to a novel nanocomposite comprising reduced graphene oxide and LFO nanoparticles, and a metronidazole detection use thereof. The LFO/rGO nanocomposite of the present invention was prepared using a simple and eco-friendly method, and it has been identified that, compared to a conventional MTZ sensor, an electrode on which the nanocomposite prepared in this way is deposited can detect and quantify MTZ with a wider linear range, a lower detection limit and superior sensitivity, and thus the present invention can be used for detecting MTZ remaining in a biosample or a food sample.
Resumen de: US2025206615A1
A nonaqueous carbon nanotube dispersion liquid includes carbon nanotubes with an average fiber length of 100 μm or more, a nonaqueous solvent, and a dispersant that is soluble in the nonaqueous solvent and has a weight-average molecular weight of 70000 or more. A content of the dispersant is 10 parts by mass or more and 500 parts by mass or less relative to 100 parts by mass of the carbon nanotubes.
Resumen de: US2025206616A1
A carbon nanotube dispersion liquid includes carbon nanotubes with an average fiber length of 10 μm or more, an aqueous solvent, and a dispersant that is soluble in the aqueous solvent and has a weight-average molecular weight of 600000 or more. A content of the dispersant is 10 parts by mass or more and 500 parts by mass or less relative to 100 parts by mass of the carbon nanotubes.
Resumen de: WO2025129779A1
Disclosed are a nano silicon-carbon composite material, a preparation method therefor, and a use thereof. The nano silicon-carbon composite material comprises co-agglomerated nano silicon particles and nano carbon particles. The mass ratio of the nano silicon particles to the nano carbon particles is (45-60):(40-55). The nano silicon particles have an average particle size of 1-50 nm and a crystallite grain size of 1-10 nm. The nano silicon particles have varied crystal orientations and are freely combined with the nano carbon particles. In the nano silicon-carbon composite material, the nano silicon particles and the nano carbon particles are uniformly dispersed, and the particle size of the nano silicon particles is small. Moreover, due to the dispersion of the nano carbon, the phenomenon of agglomeration between the nano silicon particles can be reduced. When the composite material is applied to negative electrode materials and batteries, the phenomenon of electrochemical sintering can be effectively mitigated.
Resumen de: WO2025136733A1
The present disclosure is directed to systems and methods of producing disproportionated silicon oxide composite particles. The disproportionated silicon monooxide composite particles can be produced by mixing an alkali metal salt and/or an alkaline earth metal salt, a carbon precursor, a liquid medium, and silicon monooxide particles to form a precursor suspension. The precursor suspension can be heated to form a powder that includes disproportionated silicon monooxide particles having a coating comprising alkali metal and/or alkaline earth metal, wherein the disproportionation of the silicon monoxide is at least 30%.
Resumen de: WO2025129503A1
The present disclosure relates to the technical field of lithium-ion battery positive electrode materials. Disclosed are a preparation method for nano lithium iron phosphate and an application thereof. The method comprises: dispersing iron phosphate in an alcohol solvent, and performing ultrasonic treatment to obtain a suspension A; performing laser treatment on the suspension A, stirring the suspension A during the laser treatment, adding a lithium source and a carbon source into the suspension A having undergone laser treatment, and mixing same to obtain a suspension B; and performing spray drying on the suspension B to obtain dried powder, and sintering the dried powder in an inert atmosphere to obtain nano lithium iron phosphate.
Resumen de: WO2025132634A1
The invention relates to a method for the in situ electrical characterisation of a grown carbon nanotube connecting two neighbouring cantilevers within a cantilever chip (2) and forming a low-temperature quantum dot, comprising the steps of 1) applying a voltage between two electrically conductive areas provided respectively on the two cantilevers close to the respective ends of the nanotube, the end conductive areas of the cantilevers acting respectively as drain and source of a field-effect transistor, 2) applying a gate potential to the field-effect transistor, between a gate (220) placed close to the carbon nanotube and the end conductive area acting as source, 3) measuring the current flowing between the end conductive areas of the cantilevers, and 4) processing the current measurements and the applied gate potential.
Resumen de: EP4574758A1
The present invention provides a carbon nanotube dispersion, a method of preparing the same, an electrode slurry composition and secondary battery including the carbon nanotube dispersion, wherein the carbon nanotube dispersion includes carbon nanotubes, the first dispersant surrounding the surface of the carbon nanotubes, the second dispersant for introducing charges to the surface of the carbon nanotubes, and a storage stabilizer having electrostatic repulsion against the charges.
Resumen de: EP4574759A1
A carbon nanotube dispersion liquid includes carbon nanotubes (10) with an average fiber length of 10 µm or more, an aqueous solvent, and a dispersant (20) that is soluble in the aqueous solvent and has a weight-average molecular weight of 600000 or more. A content of the dispersant (20) is 10 parts by mass or more and 500 parts by mass or less relative to 100 parts by mass of the carbon nanotubes (10).
Resumen de: EP4574757A1
A nonaqueous carbon nanotube dispersion liquid includes carbon nanotubes (10) with an average fiber length of 100 µm or more, a nonaqueous solvent, and a dispersant (20) that is soluble in the nonaqueous solvent and has a weight-average molecular weight of 70000 or more. A content of the dispersant (20) is 10 parts by mass or more and 500 parts by mass or less relative to 100 parts by mass of the carbon nanotubes (10).
Resumen de: EP4574760A1
The present invention provides a carbon nanotube dispersion including carbon nanotubes; a first dispersant including a nonionic polymer having a weight average molecular weight of 4,000 g/mol to 30,000 g/mol; and a second dispersant including an anionic polymer having a sulfonic acid (salt) group, wherein a weight ratio of the first dispersant to the second dispersant is 5:1 to 1:5; a method of preparing the carbon nanotube dispersion; and an electrode slurry composition and secondary battery including the carbon nanotube dispersion.
Resumen de: EP4574756A1
The process for the preparation of screen-printed carbon electrodes modified with oxidized single-walled carbon nanotubes (SWNTs) and decorated with graphene quantum dots for applications in the field of electrochemical sensor involves: i) interaction of SWNTs with a solution of HNO<sub>3</sub> and HCl in order to functionalize the single-walled carbon nanotubes with carboxyl groups (SWNT-COOH); ii) annealing treatment in air at 100 °C of SWNT-COOH to obtain graphene quantum dots containing carboxyl functional groups (GQD-COOH); iii) interaction of GQD-COOH with cysteamine when GQD containing thiol groups are obtained (GQD-SH) (iv) the interaction of SWNTs with aqueous solution of KMnO<sub>4</sub> and H<sub>2</sub>SO<sub>4</sub>, when "oxidized SWNTs" containing SWNTs having epoxy groups (labelled as SWNTO), hydroxyl groups (labelled as SWNT-OH) and carboxyl groups (labelled as SWNT-COOH) are obtained; and v) the deposition by the drop casting method on the surface of the screen-printed carbon electrode (SPCE) of oxidized SWNTs which are interacted with 1-ethyl-3-(3-dimethyl)aminopropyl carbodiimide (EDC) and successively with GQD-SH in order to decorate the "oxidized SWNTs" with GQD-SH.
Resumen de: EP4574755A1
A method of producing carbon materials from one or more carbon-containing feedstock gases by melting one or more electrolytes inside a reactor chamber, adding from 0.03 wt% to 0.5 wt% catalyst of the total electrolyte mass at a dosage rate from 16.7 ppm hour<sup>-1</sup> to 277.8 ppm hour<sup>-1</sup>, providing one or more feedstock gases into the molten electrolyte in the reactor chamber with a flow rate comprising at least 4.2 standard cm<sup>3</sup> min<sup>-1</sup> A<sup>-1</sup> mass equivalent of CO<sub>2</sub>, and applying a direct current density in the range from 100 A m<sup>-2</sup> up to 20 000 A m<sup>-2</sup> to one or more anodes and one or more cathodes.
Resumen de: CN120188824A
本发明的一种低成本高抗氧化活性液态碳点包装材料的制作方法,首先收集新鲜葡萄皮、葡萄籽将其清洗、烘干、粉碎、过筛得到葡萄皮籽粉;然后将葡萄皮籽粉与去离子水混合,并进行超声处理,得到碳点前体溶液;将碳点前体溶液,进行高温高压水热处理,得到碳点溶液;再将所得的碳点溶液离心,获得的上清液冷冻干燥,得到碳点粉末;最后将明胶、甘油溶于蒸馏水中,再将碳点粉末溶于上述混合物中,得到液态碳点。利用葡萄生产加工的副产物通过水热合成法合成绿色、环保、高效的液态碳点,并将其应用到糙米等杂粮中,延长贮藏期的同时提高其口感,拓宽其在食品包材中的应用,具有极大可行性。
Resumen de: CN120191938A
本发明公开了一种基于静电纺丝的硅碳自支撑柔性负极材料的制备方法及其在锂离子电池中的应用。所述制备方法可使亚硅颗粒在碳纳米纤维材料中原位生成,且包覆效果良好,具有较好的柔韧性,可直接作为锂离子电池负极材料来提高锂离子电池的电化学性能。
Resumen de: CN120199818A
本申请提供了一种复合碳材料、硅碳复合材料、电化学装置和电子装置,复合碳材料包括金属颗粒和多孔碳基体,金属颗粒的颗粒尺寸为1nm至8nm;基于复合碳材料的质量,金属颗粒的质量百分含量为0.1%至10%。本申请的电化学装置具有良好的循环性能、倍率性能和安全性能。
Resumen de: CN120189366A
一种具有抗衰老并能够快速检测pH和进行细胞荧光成像的吴茱萸提取物碳点的制备方法和应用,它涉及碳点领域,本发明采用一步水热合成法制备吴茱萸提取物碳点。所述的吴茱萸提取物碳点用于制备抗衰老的药物。用于制备检测pH的制剂,或制备细胞荧光成像的试剂。本发明以吴茱萸提取物为碳源,采用绿色简便的一步水热法合成了超小尺寸的吴茱萸提取物碳纳米点。吴茱萸提取物碳点粒径分布均匀,表面基团丰富,具有良好的水溶性和生物相容性,能够通过抗氧化和抑制黑色素合成的作用,实现高效皮肤美白和抗衰老的目的;同时因为碳点的荧光特性,可以作为荧光探针,快速检测pH,并且能够进入细胞,进行细胞荧光成像。
Resumen de: CN120199798A
本发明涉及一种低成本的多孔碳核壳纳米球及其制备和应用,将碱催化剂、碳前驱物和二氧化硅前驱物溶解在有机溶剂/水混合溶液中;碳前驱物和二氧化硅前驱物在碱催化作用下水解聚合,相分离沉淀形成二氧化硅@高分子核壳纳米球;然后高温碳化形成二氧化硅@碳核壳纳米球;进一步刻蚀处理,得到多孔碳纳米球。本发明制得的多孔碳核壳纳米球尺寸为100‑2000nm,比表面积为500‑2000m2/g,碳含量为95‑99wt%。本发明原料易得,方法简单,成本低。
Resumen de: CN120193245A
本发明提供一种大厚度、大密度、高纯度垂直碳纳米管阵列热界面材料的制备方法,涉及垂直碳纳米管阵列热界面材料技术领域,包括以下步骤:以C2H4为碳前驱体,He为惰性保护气,Ar/H2为还原气体,Al2O3为过渡层,Fe为催化剂层进行配料;利用电子束蒸镀法,将Al2O3和Fe在Si基底上进行沉积,得到基底材料;将制备的基底材料清洗后烘干;将清洗后的基底放置于管式炉的石英舟内,在He气保护作用下,将炉温升至550‑600℃,同时阶梯式通入Ar/H2,继续升温至750‑800℃,通入C2H4进行垂直碳纳米管阵列的生长,得到所述大厚度、大密度、高纯度垂直碳纳米管阵列。本发明避免了低浓度催化剂带来的低矮型垂直碳纳米管阵列和无定形碳结构,因此能制备大厚度高纯度的垂直碳纳米管阵列薄膜材料。
Resumen de: FI20236428A1
A filter transmitting electromagnetic radiation with a wavelength range of up to 400 nm, and being attached to a support is disclosed. The filter comprises: a freestanding film of carbon nanostructures having a patterned mesh; and a coating of carbon nanostructures on the free-standing film of carbon nanostructures. Further is disclose a method for producing the filter, uses thereof, and an X-ray detector.
Nº publicación: PL447233A1 23/06/2025
Solicitante:
POLITECHNIKA WROCLAWSKA [PL]
POLITECHNIKA WROC\u0141AWSKA
Resumen de: PL447233A1
Przedstawiony na rysunku sposób mechaniczno-termicznego formowania na podłożu form przestrzennych z nanorurek węglowych, znajdujący zastosowanie w mikrosystemach MEMS, w szczególności do produkcji polowych emiterów elektronów, w którym używa się roztworu zawierającego nanorurki węglowe i w którym pojedynczą formę z nanorurek węglowych kształtuje się przy użyciu mikroigły, charakteryzuje się tym, że na mikroigłę nabiera się roztwór z nanorurkami węglowymi, który ma postać hydrożelu, w którym jako substancję żelującą stosuje się polimer, który pod wpływem temperatury tworzy gęsto usieciowiony duromer, kolejno nabrany na mikroigłę roztwór z nanorurkami węglowymi przytyka się do gorącego podłoża tak, aby wytwarzany z kompozyt nanorurek węglowych i polimeru do niego przywarł. Zaraz po dotknięciu do gorącego podłoża mikroigłę od podłoża odsuwa się z prędkością, przy której następuje usieciowienie w formie szpicowatych struktur, ciągnionego od podłoża mikroigłą, kompozytu z nanorurek węglowych z polimerem. Po osiągnięciu pożądanej smukłości oraz długości utworzonej na podłożu szpicy z kompozytu duromeru oraz nanorurek, dynamicznym wycofaniem mikroigły zrywa się połączenie przywartej do podłoża szpicy z resztą pozostałego na mikroigle roztworu.