Resumen de: CN120246994A
本发明提供了一种氮掺杂碳纳米管及其制备方法、正极极片和锂离子电池,具体的制备过程为:先通过酸洗的方式在碳纳米管的表面修饰一些羧基、羟基等亲水基团,降低碳纳米管间的范德华力改善分散性,以烟酰胺类化合物作为氮源,与酸洗后的碳纳米管在水溶液中搅拌分散均匀后干燥,形成前驱体,并对该前驱体进行高温煅烧;掺杂后的碳纳米管表面的碳原子被氮原子取代,形成吡啶氮和石墨氮,可以破坏碳骨架的电子和自旋特性,氮原子会充当电子供体,有利于调控碳纳米管的导电性和对锂离子的嵌入能力,上述制备方法能够提高氮掺杂碳纳米管的分散性以及碳纳米管的导电性,降低正极极片的内阻,并最终提高锂离子电池的倍率性能和循环性能。
Resumen de: CN120246997A
本发明提供生物质废弃物制备碳纳米洋葱的方法,包括:生物质废弃物经碳化处理后进行研磨,得到生物质碳粉;将生物质碳粉转移至无水乙醇中,搅拌,然后加入碳酸钾溶液,搅拌后离心,收集上清液;混合上清液与稀硝酸溶液,搅拌,得到混合液;以混合液为原料,进行水热处理,得到碳纳米洋葱。该方法操作简单、反应条件温和、原料来源广、副产物少、所需成本低、对环境影响小、所需设备投资小、能耗低,且能制备性能优异的碳纳米洋葱,在电化学储能、催化剂载体、导电填料、吸附剂等领域具有广阔的应用前景。
Resumen de: US2025214842A1
A method for manufacturing carbon nanotubes according to embodiments of the present disclosure includes injecting a carbon source, a metal catalyst, a cocatalyst and a transport gas into a reactor, and heating the reactor to manufacture carbon nanotubes. A ratio of a molar flow rate of the carbon source to a molar flow rate of the metal catalyst is 350 to 1,300.
Resumen de: CN120246996A
本发明属于电化学领域,具体涉及一种复合柔性电极材料及其制备方法,将碳纳米管进行磺酸改性,使其表面增加含硫基团,得到含硫碳纳米管;然后使用高锰酸钾进行锰改性,得到改性碳纳米管;将铜盐和锰盐混合,制备锰基氧化物;将锰基氧化物进行酸处理,得到酸化氧化物;将酸化氧化物与改性碳纳米管一同混合,加稀氨水充分反应,然后再热处理;成膜后得到复合柔性电极材料。本发明的复合柔性电极材料的柔韧性好,且比容量高,循环稳定性好。
Resumen de: CN120246970A
本发明公开了一种纳米分散强化磷酸铁锂颗粒压实的制备方法,涉及磷酸铁锂颗粒制备技术领域,该方法包括:按照预设混合反应方案对锂源、铁源和磷源溶液的PH值和浓度进行混合反应,引入纳米碳管,采用超声分散方式进行磷酸铁锂颗粒分散,并利用激光粒度分析仪按照预设监测频率对粒径分布进行监测,获得颗粒粒径分布结果序列;获得第一调整分散参数;获得预处理球形磷酸铁锂颗粒集合;进行压实密度认证,若压实密度认证成功,获得制备完成的强化磷酸铁锂颗粒集合。本发明解决了现有技术中磷酸铁锂颗粒压实紧密度无法满足要求,制备可靠性低的技术问题,达到了提高磷酸铁锂颗粒压实紧密性的技术效果。
Resumen de: WO2024073763A1
Carbon nanostructure-based composites and methods of making and using thereof are described. The carbon nanostructure-based composites may be single-layered or multi-tiered composites. Such composites can be useful for radiation shielding, such as experienced by spacecraft and space satellites.
Resumen de: CN120247004A
本发明提供一种基于湿法转移制备完整性石墨烯的方法,方法包括:S1、将金属衬底上的石墨烯表面旋涂PMMA,形成PMMA层/石墨烯薄膜/金属衬底样品;S2、用过硫酸铵溶液刻蚀金属衬底,清洗后,得到PMMA层/石墨烯薄膜样品;S3、将PMMA层/石墨烯薄膜样品与FeCl2/FeCl3混合溶液接触一段时间,清洗,然后将清洗干净的PMMA层/石墨烯薄膜样品转移到目标衬底上,并干燥,形成PMMA层/石墨烯薄膜/目标衬底样品;S4、用丙酮溶解去除PMMA层,得到完整附着在目标衬底上的石墨烯薄膜。本发明中的方法简单易行,可重复性好,能有效提高湿法转移的石墨烯完整性,能够用于大面积石墨烯薄膜的转移。
Resumen de: US2025214842A1
A method for manufacturing carbon nanotubes according to embodiments of the present disclosure includes injecting a carbon source, a metal catalyst, a cocatalyst and a transport gas into a reactor, and heating the reactor to manufacture carbon nanotubes. A ratio of a molar flow rate of the carbon source to a molar flow rate of the metal catalyst is 350 to 1,300.
Resumen de: US2025214843A1
There is provided a novel method capable of producing high-purity single-walled carbon nanotubes with high efficiency, without concern for a decrease in the strength of a reaction tube. A method for producing carbon nanotubes by floating catalyst chemical vapor deposition (FC-CVD), comprising the step of producing carbon nanotubes by heating a feed for carbon nanotubes in the presence of an iron-containing catalyst and an alkali metal compound.
Resumen de: US2025214075A1
This present invention relates in general to method for recovery of catalytic elements from raw carbon nanotubes (CNT). The present invention particularly relates to a method recovery of catalytic elements using a filtrate solution containing recovered catalytic elements from a CNT purification process. The present invention also relates to use of recovered/recycled catalytic elements for CNT production.
Resumen de: WO2025139203A1
The present application relates to the technical field of batteries, and in particular to a negative electrode material and a preparation method therefor, and a secondary battery. The negative electrode material comprises a silicon-based active material and a matrix material; the negative electrode material contains a hydrogen element, a halogen element, a nitrogen element and a sulfur element, wherein the mass content of the hydrogen element is mH, and the mass content of the halogen element is mX, the mass content of the sulfur element is mS, the mass content of the nitrogen element is mN, and the following relations are satisfied: 0.02≤mX/mH≤5.00, 0.02≤mN/mH≤20.00, and 0.05≤mS/mH≤5.00. The mass content ratios of the hydrogen element to the nitrogen element, the sulfur element and the halogen element are each adjusted to an appropriate range, so that the volume expansion of the negative electrode material can be effectively inhibited, and the capacity, the first coulombic efficiency, the powder electrical conductivity, the cycle performance and the rate performance of the negative electrode material are all improved.
Resumen de: WO2025144322A1
The invention relates to the production method of a carbon nanotube (CNT)/metal nanocomposite powder for use in additive manufacturing and thermal spraying processes. In the method of the invention, composite powders are produced that enable the combined use of CNTs and metal powders with very different densities and enable the production of nanocomposite structures by depositing CNTs on metal powders.
Resumen de: WO2025144321A1
The invention relates to the production method of carbon nanotube (CNT)/iron oxide (Fe3O4) composite carbon nanotube obtained by combining carbon nanotubes with iron oxide (Fe3O4) nanoparticles prepared using green tea leaves. In addition, in the given processes, the bark, leaf or fruit of other plants can be used instead of green tea leaves. By means of the use of green chemistry method during the production of Fe3O4 nanoparticles, composite carbon nanotubes are produced in an environmentally friendly and economical way. In addition, by means of the combination of Fe3O4 nanoparticles with CNT, the composite carbon nanotube is given the ability to be magnetised.
Resumen de: WO2025144284A1
The invention relates to the high-efficiency synthesis of ZIF-11 or ZIF-12 or Amorphous-ZIF structures (single or multi-metal) derivatives, followed by their calcination with sulfur under inert conditions to synthesize metal sulfide in a composite nanostructure, either dispersed or embedded on a wide carbon surface, and the use of these composite nanomaterials as electrodes in Li-ion batteries, Li-S batteries, Na-ion batteries, K-ion batteries, supercapacitors, and fuel cells.
Resumen de: EP4578828A1
A carbon nanotube dispersion composition includes carbon nanotubes (A), a dispersant (B), and a solvent (C). A particle diameter D50 at a cumulative volume of 50% according to laser diffraction particle size distribution measurement is 0.3 to 7 µm, and (1) and (2) below are satisfied.(1) The dispersant (B) is a polymer that has a weight average molecular weight of 5,000 or more and 360,000 or less and includes a carboxyl group-containing structural unit derived from at least one of (meth)acrylic acid and (meth)acrylate having a carboxyl group, and a content ratio of the carboxyl group-containing structural unit is 80 mass% or more based on a mass of the polymer.(2) When the particle diameter D50 at a cumulative volume of 50% according to laser diffraction particle size distribution measurement of the carbon nanotube dispersion composition is X µm, and a pH is Y, X and Y satisfy (Formula a) and (Formula b) below: Y≥−0.149X+4.545Y≤−0.134X+5.140.
Resumen de: GB2636810A
A method of producing carbon materials from one or more carbon containing feedstock gases is described. The method comprises melting one or more electrolytes 124 inside a reactor chamber 120, followed by adding from 0.03 wt% to 0.5 wt% catalyst of the total electrolyte mass. The catalyst is added at a dosage rate from 16.7 ppm hour-1 to 277.8 ppm hour-1. One or more feedstock gases are provided into the molten electrolyte 124 in the reactor chamber 120 with a flow rate comprising at least 4.2 standard cm3 min-1 A-1 mass equivalent of CO2 A direct current density is then applied, in the range from 100 A m-2 up to 20 000 A m-2, to one or more anodes 140 and one or more cathodes 131. The carbon materials so produced may be carbon nanotubes (CNT), nano spirals, nanospheres, nanofibers (CNF), nanoflakes multi-walled nanotubes (MWCNT) or oxidised multiwall nanotubes (OMWCNT).
Resumen de: EP4580335A1
Devices, transistor structures, systems, and techniques are described herein related to backside contacts for nanoribbon field effect transistors formed using a backside placeholder contact. The device comprises source/drain regions (1101 and 1102), nanoribbon channels (203), a gate (206), as well as back-and front-side metallizations (1301, M0-M4, BM0-BM2). The backside placeholder contact is templated from a recessed dielectric material such as a recessed carbon hardmask. The recessed dielectric material is formed and replaced with a placeholder metal in frontside processing, and the placeholder metal is revealed and replaced from the transistor backside to form the backside contact. The interface between the backside contact (1501) and the source/drain region (1101) has a concave shape, curved inwardly in the source/drain region with a flat peripheral part, as shown in the inset.
Resumen de: CN120230545A
本发明涉及食品加工检测技术领域,公开了一种磁感应电场制备碳量子点及百香果果汁铜离子检测的方法,将新鲜玉米破壁后,采取磁感应电场两步酶解酸水热法合成天然液相荧光碳量子点(CQDs)。在紫外光照射下,该荧光碳量子点发出蓝色荧光。经过傅里叶红外光谱、X‑Ray粉末衍射光谱等对CQDs的结构和组成进行检测分析;荧光碳量子点含有C‑O、O‑H等亲水性基团。本发明合成的荧光碳量子点在380nm激发波长下,于450nm处出现最强荧光发射,其荧光量子产率达到93.48%。在检测Cu2+对CQDs的猝灭效果时,在20μg/g~180μg/g范围内,CQDs对铜离子的检测限为18.8μg/mL。本发明提高百香果果汁的Cu2+的浓度检测的灵敏性、速度快,保证百香果果汁的重金属检测的可靠快速性。
Resumen de: CN120237198A
本发明公开了一种二维异质结包覆层状氧化物的正极材料及其制备方法与应用,属于锂离子电池正极材料改性技术领域。所述二维异质结包覆层状氧化物的正极材料的制备方法,包括如下步骤:将层状氧化物顺次交替进行多孔钛铁氧纳米片包覆和多孔还原氧化石墨烯包覆,烧结,得到所述二维异质结包覆层状氧化物的正极材料;所述多孔钛铁氧纳米片为具有多孔结构的二维Ti0.6Fe0.4O2纳米片;所述层状氧化物包括三元锂、钴酸锂或富锂锰基氧化物。本发明采用特定的多孔钛铁氧纳米片和多孔还原氧化石墨烯结合对层状氧化物进行包覆,实现了二维异质结在层状氧化物正极表面的均匀包覆,避免了因局部包覆不均匀导致的性能差异。
Resumen de: CN120229707A
一种具有高乳化水平及优异浸润性的醛酮合成碳点及其制备方法,属于二维界面材料技术领域。本发明将乙醛和丙酮作为碳源,通过控制反应时间、醛酮种类、醛酮比例的方法来制备高乳化水平以及具有优异浸润性的碳点材料,并将调控制备得到的碳点材料应用于甲苯有机溶剂的乳化,获得高乳化水平的乳液体系。本发明采用溶剂热法,相较于水热法,无需反应釜加热,且降低能源消耗。本发明制备的碳点在乳化体系中具有极高的适应性,其独特的表面化学特性使其能够在油水界面形成高稳定性的乳化层,有效增强乳化效果。本发明得到的醛酮碳点材料大小均一,分散度高,能够满足不同油相条件下的乳化需求,且成本极为低廉,制作工艺简单。
Resumen de: CN120229712A
本发明涉及纳米碳材料的制备技术领域,具体涉及一种本征缺陷石墨烯及其制备方法,将高纯石墨粉与过氧化苯甲酰混合,研磨,得到灰色粉末;将所述灰色粉末在空气气氛条件下恒温煅烧,自然冷却至室温,得到黑色膨胀粉末;将所述黑色膨胀粉末在氨气气氛条件下恒温煅烧,自然冷却至室温,得到氮掺杂石墨;将所述氮掺杂石墨压制成棒,作为电弧炉的阳极,以高纯石墨棒作为电弧炉的阴极,在氢气和保护气体气氛条件下,进行电弧放电,待阳极棒消耗完毕,收集炉腔内产生的烟炱,得到本征缺陷石墨烯,本发明无需以石墨烯或杂原子掺杂石墨烯为前提,可直接使用高纯石墨烯作为前体,解决现有的本征缺陷石墨烯制备方法中存在的成本高和效率低的问题。
Resumen de: CN120237164A
本发明涉及一种纳米碳插层的五氧化二铌负极材料及其制备方法和应用。所述纳米碳插层的五氧化二铌负极材料的制备方法包括:(1)将层状H4Nb6O17粉末分散在去离子水中,再加入碱性有机插层剂,先在50~70℃温度下搅拌3~7天,得到有机单体插层的H4Nb6O17;(2)将所得有机单体插层的H4Nb6O17分散于含有聚合引发剂的溶液中,先在20~30℃温度下搅拌3~7天,再经洗涤离心、干燥和热处理,得到所述纳米碳插层的五氧化二铌负极材料。
Resumen de: CN120229708A
本发明公开了一种SiC表面规则碳纳米管及其制备方法,涉及低维材料规则制备的技术领域。对SiC单晶进行预处理,得到SiC基材;对SiC基材进行热处理,得到SiC热解石墨烯;将SiC热解石墨烯在金属镍气氛下进行活化,得到活化GF/SiC;利用分子束外延生长技术,加热蒸发源内的金属铟源材料,在活化GF/SiC表面生长一层金属铟纳米薄膜,得到InGF/SiC片材;将InGF/SiC片材放置于微型真空容器中进行高温退火处理,制得SiC表面规则碳纳米管。本发明制备的规则取向碳纳米管具有优异的电学、热学和力学性能,在电子器件、传感器、复合材料等领域具有广泛的应用前景。
Resumen de: US2025100885A1
A bundle of carbon nanotubes (CNT), comprising a plurality of CNT with lengths of at least about 7 microns, wherein the bundle has a diameter of less than about 12 nm.
Nº publicación: CN120229709A 01/07/2025
Solicitante:
常州天奈材料科技有限公司
Resumen de: CN120229709A
本申请实施例涉及一种单壁碳纳米管及其处理方法、导电浆料及其应用。单壁碳纳米管的处理方法包括:对初始单壁碳纳米管进行至少一次加热和冷却处理;加热和冷却处理包括:对初始单壁碳纳米管进行预设时间的加热处理;预设时间为0.1s‑5s;通入惰性气体对经过加热处理后的初始单壁碳纳米管进行冷却处理,使得初始单壁碳纳米管在1min‑10min内被冷却。如此,在使得单壁碳纳米管的管束直径减小的同时还能够提升单壁碳纳米管的导电性能。