Resumen de: GB2638577A
A zero-fossil-fuel-using non-polluting apparatus to (1) use wind power to (2) generate a steady flow of hydroelectricity (3) from increasing the height level of water from a water table or river or lake and (4) storing that water and its potential energy in (5) a water tower, and then (6) releasing that water's potential energy in a (7) steady gravity-driven flow in a downward-flowing pipeline to (8) operate in- pipe electricity generators to establish a reliable non-fluctuating source of hydroelectricity from (9) many in-pipe hydroelectricity generators in pipelines to create electricity when the water tower water is released to the in-pipe hydroelectricity generators which creates (10) a steady non-fluctuating stream of water to turn the turbines of many in-pipe hydroelectric generators to create (11) a steady, non-fluctuating flow of electricity regardless of whether the wind is blowing or the sun is shining.
Resumen de: TW202430774A
A method of monitoring a mooring system (10) of a floating offshore installation, FOI, (100) that is moored by the mooring system (10) is provided. The method comprises obtaining parameters related to a position of the FOI, wherein the parameters include at least mooring system parameters that are indicative of a region (15) within which a position of the FOI is expected to lie. The method further includes obtaining position measurements of an actual position (11) of the FOI, and deriving, from the obtained parameters and from the position measurements of the FOI, a state of the mooring system (10) of the FOI.
Resumen de: GB2638417A
A floatable foundation 100 for a wind turbine generator comprising a tubular central column 10, an upper support structure 11 arranged about and fixed to the tubular central column, a lower support structure 12 fixed to the tubular central column 10, three outer column members 20,21,22 and three horizontally extending pontoon members 30,31,32, each fixed to and extending between the lower support structure 12 and an outer column member 20,21,22; and three horizontally extending beam members 40,41,42, each fixed to and extending between the upper support structure 11 and an outer column member 20,21,22. The upper support structure 11 may comprise a plurality of vertically arranged interconnected flat panels (11 a-f, Fig.6) and corresponding support plates (11g-l, Fig.6) and the pontoons and upper beam members may be box beams. There is also provided a method of constructing a floatable foundation 100 for a wind turbine generator.
Resumen de: WO2024083294A1
The invention relates to adjusting collective pitch of the wind turbine rotor blades. A sensor signal is received, from wind turbine sensors, indicative of wind turbine rotor loading in a fore-aft direction. A first component is determined, based on the received sensor signal, in the fore-aft direction, the first component including high frequency collective content, greater than 2P frequency content, from the received sensor signal. A second component that is orthogonal to the first component is generated. The first and second components are rotated about a phase angle to obtain first and second phase-shifted components. A collective pitch reference offset value is determined for the three rotor blades based on the first or the second phase-shifted component. A control signal is transmitted to adjust collective pitch of the rotor blades based on the determined collective pitch reference offset value.
Resumen de: CN120077362A
A computer-implemented method of performing a software upgrade of a control system of a wind turbine, the control system comprising a network of nodes, the method comprising the steps of receiving and reading an upgrade request, and in response to reading the upgrade request, performing an interrogation process during which one or more of the nodes are interrogated. Input from a query process is received and analyzed to determine if an upgrade request can be permitted. If permission is granted, at least one of the nodes is upgraded with new software.
Resumen de: DK202200941A1
After assembling a floating offshore wind turbine construction (1), which includes the wind turbine (2) as well as the support structure (3), it is transported to a platform (16) at a head of an inclined slipway (23) that extends from a level above a surface (4) of the water to a position under the surface (4) of the water. The construction (1) is launched by moving it from the platform (16) down along the slipway (23) into the water until the assembled floating offshore wind turbine (1) is lifted off the slipway (23) by the buoyancy on the floating support structure (3).
Resumen de: KR20250127793A
이중 블레이드 풍차를 이용한 수직축 풍력 발전기를 개시한다. 본 개시의 일 실시예에 의하면, 원통형의 제1 샤프트에 결합되어 미리 설정된 방향으로 회전하는 다리우스 블레이드, 및 상기 제1 샤프트 내부에 동축으로 회전가능하도록 삽입된 제2 샤프트에 결합되고 상기 다리우스 블레이드와 역방향으로 회전하는 사보니우스 블레이드를 포함하는 풍차모듈; 상기 제1 샤프트의 하단부에 고정결합된 원통 형상을 가지며, 고정자 코일이 설치된 복수 개의 링 플레이트가 내측면을 따라 상하 등간격으로 형성되는 고정자부; 상기 제2 샤프트의 하단부 외주면에 고정결합되고, 상하 표면에 영구자석이 설치되며, 상기 링 플레이트와 교대로 다단 형태를 이루도록 배치되는 복수 개의 원반 플레이트를 포함하는 회전자부; 상기 풍차모듈 하단에 구비되어 내부에 고정자부 및 회전자부가 수용되는 수용공간이 형성되며, 상기 수용공간의 내측면 상에는 회전가속유닛이 형성되는 발전기 하우징; 및 상기 발전기 하우징의 저부에서 제1 샤프트 및 제2 샤프트의 회전을 지지하는 중심축 지지부를 포함하는 수직축 풍력 발전기를 제공한다.
Resumen de: KR20250127794A
탄소 섬유 강화 플라스틱(CFRP)을 포함하는 타워, 해상에서 부유되고 상기 타워를 지지하고 파력발전기를 포함하는 부유구조물, 해저면에 고정되는 앵커, 상기 부유구조물 및 상기 앵커를 연결하는 계류선, 상기 계류선의 길이를 변화시키는 계류선 길이 조절 장치, 상기 부유구조물에 인접한 지역에서의 해양 기상 예보 및 실시간 기상 정보를 수신하는 수신기, 및 상기 해양 기상 예보 및 상기 실시간 기상 정보를 분석하여 미래의 정해진 시간 동안의 해상 상태를 예측하는 분석 데이터를 생성하고, 상기 해양 기상 예보 또는 상기 분석 데이터를 토대로 상기 계류선 길이 조절 장치로 상기 계류선의 길이 변화 제어 신호를 송신하는 프로세서를 포함하는 부유식 해상복합발전 계류시스템.
Resumen de: KR20250127772A
해상에 부유하는 부력체 상에 포함되어 재생에너지를 생산하는 풍력발전부, 상기 풍력발전부로부터 생산된 재생에너지가 경유하여 분배될 수 있도록 하는 해상 변전소, 상기 해상변전소로부터 분배된 재생애너지를 충전하는 해상충전부 및 상기 해상충전부와 연통된 선박접안부를 포함하되, 상기 선박접안부는 선박이 상기 선박접안부에 도킹한 경우, 상기 선박과 지속적으로 접안되어 상기 선박에게 재생에너지를 전달할 수 있는 것을 특징으로 하는 친환경 전기추진CTV 해상충전시스템이 개시된다.
Nº publicación: EP4605649A1 27/08/2025
Solicitante:
LM WIND POWER AS [DK]
LM Wind Power A/S
Resumen de: WO2024084024A1
In a first aspect, a wind turbine blade torsion measuring system is provided. The wind turbine blade torsion measuring system comprises a shaft, a rotary sensor assembly and a connecting structure. The connecting structure is configured to movably connect the rotary sensor assembly to a blade structure to allow a relative movement between the rotary sensor assembly and the blade structure in a direction substantially parallel to the spanwise direction of the wind turbine blade. In a further aspect, a wind turbine blade comprising one or more wind turbine blade torsion measuring systems is provided. In yet a further aspect, a method of determining the torsional deformation of this wind turbine blade is provided. In yet a further aspect, a method for mounting the wind turbine blade torsion measuring system in a wind turbine blade is provided.