Absstract of: WO2026011021A1
Large scale exploitation of Solar energy is proposed by using floating devices which use solar energy to produce compressed hydrogen by electrolysis of deep sea water. Natural ocean currents are used to allow the devices to gather solar energy in the form of compressed hydrogen from over a large area with minimum energy transportation cost. The proposal uses a combination of well understood technologies, and a preliminary cost analysis shows that the hydrogen produced in this manner would satisfy the ultimate cost targets for hydrogen production and pave the way for carbon free energy economy.
Absstract of: WO2026010322A1
According to one aspect of the present invention, a water electrolysis system comprising a plurality of modularized water electrolysis stacks is provided, the system comprising: a plurality of water electrolysis stacks; and a stack management unit which determines a stack to be operated from among the plurality of water electrolysis stacks, with reference to load power corresponding to the plurality of water electrolysis stacks and the maximum operating power of each of the plurality of water electrolysis stacks, wherein an operating priority for the plurality of water electrolysis stacks is determined on the basis of a monitoring result of the operating voltage of each of the plurality of water electrolysis stacks.
Absstract of: WO2026009910A1
An electrolysis cell 21 comprises: a solid electrolyte layer 211; a fuel electrode layer 213 that is disposed as a stack on one surface side of the solid electrolyte layer 211; and an air electrode layer 212 that is disposed as a stack on the other surface side of the solid electrolyte layer 211. The fuel electrode layer contains Fe. When a surface 213a1 on the solid electrolyte layer side of the fuel electrode layer is defined as a first surface and a surface 213b2 on the side opposite from the solid electrolyte layer side is defined as a second surface, n points pk (where k is an integer of 1 to n) are set in the fuel electrode layer along the thickness direction at intervals such that a point p1 is located at the first surface, a point pn is located at the second surface, and k increases in the direction from the first surface toward the second surface, and when a value obtained by dividing, by n, a cumulative value of the Fe concentration at each of the points from the point p1 to the point pk is defined as a normalized cumulative value Ck of the Fe concentration at the point pk, a normalized cumulative value Cn is 0.118-0.367 wt%.
Absstract of: WO2026009849A1
This organic compound is represented by general formula (1). X includes at least one type of linking group selected from the group consisting of an arylene group and an aromatic heterocyclic group, Y is a single bond or an aliphatic hydrocarbon linking group, Ar is an aromatic heterocyclic group, R1 and R2 are each independently a hydrogen atom or an aliphatic hydrocarbon group, R3, R4, R5 and R6 are each independently a hydrogen atom, an aliphatic hydrocarbon group or an aryl group, and at least one combination selected from the group consisting of R3 and R5, and R4 and R6, may bond to each other to form a ring.
Absstract of: WO2026009969A1
The present invention addresses the problem of providing a hydrogen production apparatus using a solid oxide electrolysis cell, in which the water vapor utilization rate is high, and followability of a change in water vapor supply flow rate with respect to a power load fluctuation is good . The present invention also addresses the problem of providing a hydrogen production method using the hydrogen production apparatus. A hydrogen production apparatus 10 has a reactor R in which a solid oxide type electrolysis cell 10 is installed, the solid oxide type electrolysis cell 10 including: a water vapor electrode 20 in which an electrolytic reaction of water vapor occurs; a gas-impermeable and ion-permeable solid oxide electrolyte 40; and a counter electrode 30 in which a reaction of a charge carrier that is generated through the electrolytic reaction in the water vapor electrode 20 and that passes through the solid oxide electrolyte 40 occurs. The hydrogen production apparatus 10 has an injector 23 that supplies water in a pulsed manner to the water vapor electrode 20 side of the reactor R. The above problems are solved by supplying water to the water vapor electrode 20 in a pulsed manner.
Absstract of: WO2026009488A1
Disclosed is a novel technology for applying SOEC in a direct reduction process in which a shaft furnace is used. A hydrogen reduction system according to the present disclosure has a shaft furnace, a reducing gas supply device, a reducing gas heating device, a source material pretreatment device, and a hydrogen production device. In this hydrogen reduction system, a reducing gas is supplied to the shaft furnace via the reducing gas supply device and the reducing gas heating device, and a 600°C to 900°C iron oxide source material is supplied to the shaft furnace via the source material pretreatment device. The hydrogen production device has an SOEC, and the SOEC uses a steam-containing gas which has been discharged from the shaft furnace to produce hydrogen gas. The hydrogen gas produced by the SOEC is used as a reducing gas.
Absstract of: WO2026008081A1
Disclosed in the present invention is a system for preparing green methanol by means of biomass gasification coupled with green hydrogen. The system comprises: a gasification unit (A), a purification unit (B), a hydrogen and oxygen unit (C) and a synthesis unit (D), wherein synthesis gas (104) produced by the gasification unit (A) passes through the purification unit (B) and serves as a raw material gas (107) of the synthesis unit; oxygen (109) produced by the hydrogen and oxygen unit (C) serves as oxygen of the gasification unit, and hydrogen (113) produced by the hydrogen and oxygen unit (C) serves as a hydrogen source for adjusting the hydrogen-carbon ratio of the raw material gas of the synthesis unit (D); and part of a purge gas (121) of the synthesis unit (D) is returned to the gasification unit for recycling. The system of the present invention operates stably and reliably, and has a high utilization rate of renewable carbon sources, and a low methanol preparation cost.
Absstract of: WO2026006927A1
The various embodiments described herein generally relate to the production and storage of gasses, such as hydrogen and oxygen, and more particularly to an electrolysis cell for supplying the hydrogen and oxygen gasses as gaseous fuel for clean power generation systems such as linear alternators.
Absstract of: AU2025271499A1
Abstract A membrane element configured for filtration of water while simultaneously co- generating hydrogen, wherein the membrane comprises at least one anode electrode and at least one cathode electrode, each is in communication with said membrane; further wherein said membrane is adapted for electrolysis of at least a portion of said water to simultaneously at least partially generate hydrogen therefrom; further wherein at least one electrode selected from a group consisting of at least one anode electrode and at least one cathode electrode comprise at least one selected from a group consisting of at least one feed spacer, at least one permeate spacer and any combination thereof. combination thereof.20 ov b s t r a c t o v c o m b i n a t i o n t h e r e o f
Absstract of: AU2025271525A1
MAGNETOHYDRODYNAMIC ELECTRIC POWER GENERATOR A power generator that provides at least one of electrical and thermal power comprising (i) at least one reaction cell for the catalysis of atomic hydrogen to form hydrinos identifiable by unique analytical and spectroscopic signatures, (ii) a reaction mixture comprising at least two components chosen from: a source of H20 catalyst or H20 catalyst; a source of atomic hydrogen or atomic hydrogen; reactants to form the source of H20 catalyst or H20 catalyst and a source of atomic hydrogen or atomic hydrogen; and a molten metal to cause the reaction mixture to be highly conductive, (iii) a molten metal injection system comprising at least one pump such as an electromagnetic pump that causes a plurality of molten metal streams to intersect, (iv) an ignition system comprising an electrical power source that provides low-voltage, high-current electrical energy to the plurality of intersected molten metal streams to ignite a plasma to initiate rapid kinetics of the hydrino reaction and an energy gain due to forming hydrinos, (v) a source of H2 and 0 2 supplied to the plasma, (vi) a molten metal recovery system, and (vii) a power converter capable of (a) converting the high- power light output from a blackbody radiator of the cell into electricity using concentrator thermophotovoltaic cells or (b) converting the energetic plasma into electricity using a magnetohydrodynamic converter. MAGNETOHYDRODYNAMIC ELECTRIC POWER GENERATOR ov o v
Absstract of: AU2024265710A1
Disclosed herein is a method of generating molecular hydrogen comprising the steps of: (i) providing a plasma chamber having an inlet and an outlet; (ii) providing a feed of a hydrogen containing molecule through the inlet to a plasma in said plasma chamber wherein said plasma is exposed to at least one electromagnetic frequency whereby said hydrogen containing molecule is disassociated into a hydrogen species and at least one non-hydrogen species; (iii) removing said hydrogen species from the chamber at the outlet; and (iv) then forming molecular hydrogen from said hydrogen species.
Absstract of: US20260009149A1
Provided is a transition metal-doped nickel oxyhydroxide catalyst, its preparation method, and its application in seawater electrolysis for hydrogen production. The method includes: (1) constructing a three-electrode system and using a chronoamperometry or chronopotentiometry method to electrodeposit a precatalyst onto a conductive substrate from a mixed metal salt solution containing nickel, iron, and at least one other transition metal salt such as cobalt or chromium; and (2) using the precatalyst-loaded substrate as a working electrode in an alkaline solution and applying a constant current to perform an in-situ conversion, thereby forming the final transition metal-doped nickel oxyhydroxide catalyst. The resulting catalyst exhibits high catalytic activity, high selectivity for oxygen evolution, and exceptional long-term stability under high current densities, making it highly suitable for direct seawater electrolysis systems,
Absstract of: US20260009146A1
We synthesized a tungsten titanium carbide (W2TiC2) MXene. By loading cobalt onto the surface of W2TiC2, we developed an effective and stable catalyst for an alkaline hydrogen evolution reaction. The catalyst exhibited a small overpotential of 63 mV at 10 mA/cm2 and a low Tafel slope of 44.3 mV/dec. At high current density of 100 mA/cm2 and 1000 mA/cm2, low overpotentials of 191 mV and 408 mV were achieved, outperforming commercial Pt/C electrodes. Under both current ranges, our catalyst exhibited excellent stability of 500 h at 10 mA/cm2 and for 100 h at 1000 mA/cm2 without any degradation. In flow cell tests, by pairing with Ni foam, our catalyst required much lower cell voltage than commercial Ni foam Pt/C and maintained ̃100% H2 faradaic efficiency over 15 h of continuous tests from 50 to 400 mA/cm2. Under more demanding industry-level conditions, the catalyst maintains the incredible performance, exhibiting an excellent stability of at least 1000 h at 4000 mA cm−2 in 1 M KOH.
Absstract of: US20260009148A1
The present invention provides an oxygen-dominated supra-nano dual-phase catalytic reaction material, which includes a uniform oxygen-enriched amorphous shell and a core encapsulated within the uniform oxygen-enriched amorphous shell. This invention exhibits ultrahigh HER performance, a critical reaction in water splitting, making it suitable for application in hydrogen production industries, battery companies, new energy vehicle enterprises, and large power stations.
Absstract of: AU2024310412A1
The present disclosure relates generally to integrated processes for the production of methane and its use in dry methane reforming. In one aspect, the present disclosure provides process for producing a stream containing hydrogen and carbon monoxide, the process comprising: providing a methane synthesis feed stream comprising hydrogen and carbon dioxide; contacting the methane synthesis feed stream with a methane synthesis catalyst (e.g., in a methane synthesis reactor) to form a methane synthesis product stream comprising methane and water; providing a dry methane reformation feed stream comprising carbon dioxide and at least a portion of the methane of the methane synthesis product stream; contacting the dry methane reformation feed stream with a dry methane reformation catalyst (e.g., in a dry methane reformation reactor) to produce a dry methane reformer product stream comprising carbon monoxide and hydrogen.
Absstract of: US20260009145A1
An electrolysis system has at least two electrolysis installations, a power supply source with a direct voltage output, and a central supply line connected to the direct voltage output. A direct current, at a first direct voltage, can be fed into the central supply line. The electrolysis installations are connected electrically in parallel to the central supply line. For a direct voltage supply from the public power grid a central voltage source converter converts an input-side alternating voltage into the output-side first direct voltage at a direct voltage output. Each electrolysis installation is connected via a DC/DC converter that converts the first direct voltage into a second direct voltage, parallel to the direct voltage output so that the second direct voltage drops across the electrolysis installation. Each of the DC/DC converters can be controlled and/or regulated for adapting a level of its second direct voltage.
Absstract of: US20260008033A1
A method for producing dihydrogen by photodissociation of water, may include bringing an aqueous solution in contact with oxidized nanodiamonds under solar, natural, or artificial illumination (or light). The oxidized nanodiamonds may have an oxygen/carbon ratio of at least 5% atomic, determined by XPS without previous treatment of the oxidized nanodiamonds. The method may further include preparing the oxidized nanodiamonds by subjecting nanodiamonds to an oxidizing treatment. The oxidizing treatment may include annealing at a temperature of 500° C.±50° C. for a duration in a range of from 1 to 5 hours under an oxygenated atmosphere.
Absstract of: US20260008042A1
The present disclosure is directed to a processing solution composition comprising a metal salt, an acid, a solvent, and a non-metal reductant. The present disclosure is also directed to a method of impregnating a porous material by covering or coating the porous material with a processing solution comprising a metal salt, an acid, a solvent, and a non-metal reductant.
Absstract of: US20260008100A1
A porous titanium sheet configured to function as an anode side gas diffusion layer of a proton exchange membrane (PEM) electrolyzer is formed by a powder technique, such as tape casting or powder metallurgy.
Absstract of: US20260008043A1
The present disclosure provides a catalyst, its preparation and uses thereof, the catalyst comprising a conductive substrate coated by at least two layers including a proximal layer and a distal layer wherein said proximal layer comprises a proximal metal composition and said distal layer comprise a distal metal composition, the proximal metal composition being different from the distal metal composition; wherein said proximal metal composition comprises a metallic M and said distal metal composition comprise a combination of two or more different metal complexes, each having a formula MxLy, wherein M, which may be the same or different in said two or more metal complexes, represents a metal atom; L, which may be the same or different in said two or more metal complexes, represents a moiety comprising at least one atom selected from the group consisting of oxygen (O), phosphorous (P), boron (B) and nitrogen (N); x represents any value between (1) and (6); and y represents any value between (1) and (6); and wherein said metal atom of metallic M and said metal atom in MxLy may be the same or different metal atom.
Absstract of: WO2025263071A1
An ammonia decomposition system includes: a first decomposition part for thermally decomposing ammonia into nitrogen and hydrogen; a steam supply part for generating steam and supplying the steam to the first decomposition part as a heat source; a recovery line for recovering steam after passage through the first decomposition part; a turbine driven by the steam recovered by the recovery line; and a power generation part for generating electric power by being driven by the turbine.
Absstract of: WO2025263000A1
A plant control device according to the present invention comprises: a signal reception unit that receives a signal including at least one of a power demand, a hydrogen demand, and a steam demand of a production process; and a control unit that, on the basis of the received signal, adjusts at least one of the amount of steam generated by a boiler, the amount of steam supplied to a steam turbine, the amount of steam supplied to an ammonia decomposition device, and the amount of steam supplied to the production process, such that a decrease in the load of the boiler is suppressed.
Absstract of: CA3273968A1
5 10 15 20 25 30 35 Abstract The present invention relates to a method of preparing a composite material, in particular one useful as a catalyst in an electrolytic hydrogen evolution reaction and/or the oxygen evolution reaction and/or urea oxidation-assisted water electrolysis. Provided is a method of preparing a composite material, the method comprising the steps of: (i) electrochemically depositing material onto a substrate from a deposition solution comprising a nickel (II) salt and graphene oxide, to obtain a nickel-reduced graphene oxide composite material comprising nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate; (ii) after step (i), placing the substrate, having the nickel-reduced graphene oxide composite deposited thereon, in an alkaline solution along with a counter electrode; and (iii) after step (ii), partially electrochemically oxidising the nickel, to obtain a partially oxidised nickel-reduced graphene oxide composite material comprising partially oxidised nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate. The composite of the invention demonstrates high catalytic activity for electrolytic hydrogen production under alkaline water electrolysis conditions (for example, a hydrogen evolution current of up to 500 mA cm-2 at -1.35 V against a Reversible Hydrogen Electrode). High activity is demonstrated even when the substrate (on which the composite is deposited)
Absstract of: US2025387773A1
A photocatalytic cell of the disclosure is a photocatalytic cell that contains a photocatalyst sheet and an electrolyte. The photocatalyst sheet includes a carrier sheet provided with multiple fibers bonded thereto, and multiple photocatalyst particles supported or fixed on the carrier sheet, the multiple photocatalyst particles include tungsten oxide particles, and a mass of the multiple photocatalyst particles per unit area of the photocatalyst sheet is 20 g/m2 or more.
Nº publicación: JP2026002230A 08/01/2026
Applicant:
株式会社日立製作所
Absstract of: WO2025263025A1
This water electrolysis system includes: a water electrolysis device including a water electrolysis cell that generates hydrogen by electrolysis; a power supply device capable of supplying, to the water electrolysis device, a drive voltage for causing electrolysis in the water electrolysis cell and a voltage having polarity opposite that of the drive voltage; and a control device that controls the driving of the power supply device. In operation stop processing for stopping the electrolysis caused by the supply of the drive voltage, the control device controls the driving of the power supply device so as to stop the supply of the drive voltage to the water electrolysis device and then supply the opposite polarity voltage to the water electrolysis device.