Absstract of: TW202436207A
A first aspect is directed to a method for producing hydrogen by thermochemical splitting of water includes injecting one or more feed streams of water into a reaction chamber. The method further includes using heat from a subterranean heat source to carry out the thermochemical splitting of water to form hydrogen and oxygen in the reaction chamber. The formed products are subsequently removed from the reaction chamber. A second aspect is directed to a reaction system includes a wellbore extending from a surface into a subterranean heat source. The reaction system further includes a reaction chamber configured to be maintained at a reaction temperature using heat from the subterranean heat source. The reaction system further includes one or more inlet conduits. The inlet conduits are configured to provide one or more feed streams to the reaction chamber. The reaction system also includes outlet conduits configured to allow flow of one or more product streams.
Absstract of: WO2024184587A1
The invention relates to a method for producing a compound comprising at least one of hydrogen or oxygen. The method comprises providing water and a first substance, producing a mixture comprising the water and bubbles comprising the first substance, decreasing diameter of bubbles comprising the first substance, decomposing a part of the water, and composing a compound at least from the decomposed water and the first substance, and the compound comprising at least one of hydrogen or oxygen. The invention further relates to apparatus for producing a compound comprising at least one of hydrogen or oxygen.
Absstract of: WO2024184586A1
The invention relates to a method for producing hydrogen. The method comprises providing water and a gaseous substance, the gaseous substance comprises hydrogen atoms and carbon atoms, producing a mixture comprising the water and bubbles comprising the gaseous substance, decreasing diameter of the bubbles comprising the gaseous substance, and producing gaseous hydrogen by decomposing the gaseous substance in the bubbles having the decreased diameter. The invention further relates to apparatus for producing hydrogen gas.
Absstract of: GB2642535A
A method for the manufacture of catalyst-coated polymer electrolyte membranes (CCMs) for water electrolysis is described. The CCMs may comprise a proton exchange membrane (PEM) or an anion exchange membrane (AEM) with an anode layer and/or a cathode catalyst layer applied to a face of the membrane. The method comprises the steps of forming a polymer electrolyte membrane on a first catalyst layer 2 comprising a platinum-containing catalyst on a carbon support material 1 and a catalyst layer ion-conducting polymer. The catalytic layer 2 may comprise a hydrogen evolution catalyst (HER) and/or an oxygen evolution catalyst (OER). The first catalyst layer 2 has an expected effective platinum surface area in the range of and including 5-200 cm2Pt/cm2 and a carbon content in the range of and including 30-60 wt%.
Absstract of: GB2642534A
A system and process for facilitating the direct electrolysis of saltwater, such as seawater, is described. The system comprises an acid-base flow battery (ABFB) 230 with an acid solution outlet 403, an alkaline solution outlet 402 and a saltwater inlet 401; and a water electrolyser 340 downstream of the ABFB for producing hydrogen 408, the electrolyser comprising a negative electrode and a positive electrode. The ABFB is in fluid communication with the water electrolyser, such that, in use, an alkaline solution from the alkaline solution outlet of the acid-base flow battery passes into a positive electrode channel of the water electrolyser proximal the positive electrode. By coupling a water electrolyser with an upstream acid-base flow battery in this way, the base solution by-product from the ABFB is fed into the positive (anode) channel of the electrolyser. In this way, the pH proximal the positive electrode is increased. As a result, saltwater is subjected to electrolysis without the evolution of chlorine or bromine at the positive electrode. The brine by-product of the process may be subjected to freshwater-saltwater reverse electrodialysis (RED) to convert dilution energy to usable electricity.
Absstract of: EP4678787A1
This invention provides systems and processes for the production of a hydrocarbon fuel. A gaseous feed comprised of a carbon dioxide rich feedstock, suitably derived from waste exhaust or from direct air capture, is used as an input for a carbon dioxide electrolysis unit. The carbon dioxide electrolysis unit comprises a bipolar membrane and operates under ambient temperature and elevated pressure. The electrolysis unit comprises at least first and second outputs, wherein the first output comprises a first effluent line that comprises a synthesis gas (syngas) product and the second output comprises a second effluent line that comprises a gaseous oxygen byproduct. The first effluent line is coupled to a synthetic production unit that can produce hydrocarbon fuels, such as kerosene or methanol.
Absstract of: JP2024092034A
To improve thermal efficiency of a treatment plant for raw material fluid.SOLUTION: A treatment plant for raw material fluid comprises a raw material reaction facility 40 for generating reaction gas RG by reacting raw material fluid NH. The raw material reaction facility 40 comprises preheaters 44a and 44b and a reactor 45. The preheaters 44a and 44b are heat exchangers for heating the raw material fluid NH by exchanging heat between a second heat medium and the raw material fluid. The reactor 45 is a heat exchanger for heating and reacting the raw material fluid NH by exchanging heat between a first heat medium different from the second heat medium and the raw material fluid NH heated by the preheaters 44a and 44b.SELECTED DRAWING: Figure 1
Absstract of: DK202430371A1
Initially an assembled electrolyser cell stack comprising at least alternatingly, Electrodes and bipolar plate assemblies and Diaphragms is provided. Stack internal process and flow volumes, namely catholyte flow volume and process chambers and anolyte flow volume and process chambers adjacent to and on each side of every diaphragm are simultaneously partially or completely flooded through each of stack internal catholyte manifold and stack internal anolyte manifold with a liquid alkaline conservation medium and O2 side electrolyte inlet connection, H2 side electrolyte inlet connection, anolyte and oxygen gas exit connection and catholyte and hydrogen gas exit connection are each sealed off adjacent to an electrolyser endplate after partially or completely flooding the mentioned stack internal volumes with the fluid conservation medium.
Absstract of: CN120418995A
The invention relates to an electrochemical reactor (1), in particular a redox flow cell, a fuel cell, an electrolytic cell or an electrosynthesis cell, comprising a stack (Z) consisting of a plurality of cells (2) which are separated from each other by at least one bipolar plate (3) and are stacked in a stacking direction (R), wherein the cells (2) each have two electrodes (5, 6) and a separator (10) arranged between the two electrodes (5, 6), and wherein the at least one bipolar plate (3) is flexible. In order to be able to increase mass transfer and material distribution with low construction and equipment investment and low material load, an oscillator (13) which excites at least one bipolar plate (3) to generate oscillations is integrated in the bipolar plate (3).
Absstract of: AU2024270923A1
A hydrogen generating device provided with a sound insulation cover and a hydrogen generating device provided with a novel power module. The hydrogen generating device comprises a water tank, an electrolytic cell, a humidifier, a refining device, and a sound insulation cover; the water tank is used for containing electrolyzed water; the electrolytic cell is arranged in the water tank and is used for electrolyzing water to generate hydrogen-containing gas; the humidifier is provided with a humidifying chamber for containing supplementary water; the refining device is arranged in the humidifier and is used for refining the hydrogen-containing gas; the sound insulation cover is arranged in the humidifier and is provided with a sound insulation cavity, a connecting tube connecting the water tank and the refining device, and a gas outlet hole; the hydrogen-containing gas passes through the connecting tube and the refining device and flows into the supplementary water in the sound insulation cavity, and then the hydrogen-containing gas flows into the humidifying chamber through the gas outlet hole. Thus, according to the present invention, sound generated when the hydrogen-containing gas flows in the device can be insulated by means of the sound insulation cover, so as to improve the experience effect, and heat dissipation can be effectively carried out on a circuit board, thereby improving the operation efficiency.
Absstract of: CN119491243A
The invention relates to the technical field of household appliances, and provides a hydrogen peroxide generating device and application thereof. The hydrogen peroxide generating device comprises a shell, a liquid inlet and a liquid outlet, the liquid inlet and the liquid outlet are formed in the shell, the liquid inlet is used for being connected with a water supply component, a cathode piece and an anode piece which are used for electrolyzing water to generate a hydrogen peroxide solution are arranged in the shell, and the liquid outlet is used for discharging the generated hydrogen peroxide solution. According to the hydrogen peroxide generating device provided by the invention, water entering the shell through the liquid inlet can be electrolyzed to generate the hydrogen peroxide solution, and the generated hydrogen peroxide solution is discharged through the liquid outlet; the hydrogen peroxide generating device can be applied to household appliances such as clothes washing equipment, clothes processing equipment, an air conditioner, a dehumidifier, a refrigerator and a dish washing machine, can play a good role in cleaning, odor removal, disinfection, sterilization and the like, reduces the use of detergent, and improves the use experience of a user.
Absstract of: KR20240175881A
Provided is the complex energy base hydrogen production system utilizing the solar energy and sunlight complex energy and produces the hydrogen. The complex energy-based hydrogen generation system comprises: a complex energy block collecting solar energy to generate hot water or electricity; a hydrogen generation block generating hydrogen by using the generated hot water; and an electricity supply block storing or supplying the generated electricity.
Absstract of: AU2024407460A1
A catalyst coated separator for alkaline water electrolysis (1) comprising a porous support (100) and on at least side of the support, in order: - an optional porous polymer layer (200), - a non-porous alkali-stable polymer layer (300), and - a catalyst layer (400).
Absstract of: FI20245884A1
The invention relates to a system and method for producing pressurized hydrogen from a solid oxide electrolyser connected to an electrochemical hydrogen compressor. The system comprises a solid oxide electrolyser (SOEC) (1), which is configured to generate hydrogen; an electrochemical hydrogen compressor (EHC) (2), which is configured to pressurize said hydrogen generated by said SOEC; and a first recovery circuit, which is configured to recover water exiting the cathode (2c) of the EHC (2) by providing a return path through the EHC (2) to the cathode (1C) of the SOEC (1) for consumption. An optional second recovery circuit is configured to recover heat from at least one output flow (4, 5) of the SOEC (1) to a heat exchanger (15), which is configured to heat said return path (4,18) at the cathode (1C) of said solid oxide electrolyser (1).
Absstract of: CN116377465A
The invention is applicable to the related technical field of hydrogen production, and provides a polar plate for reducing the starting time of an alkaline hydrogen production device and an assembly process thereof.The main polar plate comprises a metal ring, two partition plates which are symmetrically arranged are fixedly connected to the inner wall of the metal ring, holes are evenly distributed in the metal ring, a cavity is formed between the holes and the two partition plates, the partition plates are 0.6 mm steel plates, and the metal ring is made of stainless steel. The distance between the two partition plates is 0.8 mm. A cavity is formed in the metal ring under the action of the partition plates, when the alkaline hydrogen production device is started, water at the constant temperature of 85 DEG C is injected into a new drainage basin 2 hours ahead of time by a technician, circulation is conducted to heat the electrolytic bath till the electrolytic bath is heated to 65 DEG C, at the moment, the alkaline hydrogen production device is started, circulation of the water at the constant temperature of 85 DEG C is stopped, and therefore the alkaline hydrogen production device is started. And the temperature of the alkaline hydrogen production electrolytic cell is increased from 65 DEG C to 85 DEG C. The time is 2 hours; the starting time of the alkaline hydrogen production device is shortened to 2 hours, and the energy consumption of the alkaline hydrogen production devi
Absstract of: KR20240175881A
Provided is the complex energy base hydrogen production system utilizing the solar energy and sunlight complex energy and produces the hydrogen. The complex energy-based hydrogen generation system comprises: a complex energy block collecting solar energy to generate hot water or electricity; a hydrogen generation block generating hydrogen by using the generated hot water; and an electricity supply block storing or supplying the generated electricity.
Absstract of: WO2026010322A1
According to one aspect of the present invention, a water electrolysis system comprising a plurality of modularized water electrolysis stacks is provided, the system comprising: a plurality of water electrolysis stacks; and a stack management unit which determines a stack to be operated from among the plurality of water electrolysis stacks, with reference to load power corresponding to the plurality of water electrolysis stacks and the maximum operating power of each of the plurality of water electrolysis stacks, wherein an operating priority for the plurality of water electrolysis stacks is determined on the basis of a monitoring result of the operating voltage of each of the plurality of water electrolysis stacks.
Absstract of: KR20240175881A
Provided is the complex energy base hydrogen production system utilizing the solar energy and sunlight complex energy and produces the hydrogen. The complex energy-based hydrogen generation system comprises: a complex energy block collecting solar energy to generate hot water or electricity; a hydrogen generation block generating hydrogen by using the generated hot water; and an electricity supply block storing or supplying the generated electricity.
Absstract of: KR20240175881A
Provided is the complex energy base hydrogen production system utilizing the solar energy and sunlight complex energy and produces the hydrogen. The complex energy-based hydrogen generation system comprises: a complex energy block collecting solar energy to generate hot water or electricity; a hydrogen generation block generating hydrogen by using the generated hot water; and an electricity supply block storing or supplying the generated electricity.
Absstract of: AU2025271525A1
MAGNETOHYDRODYNAMIC ELECTRIC POWER GENERATOR A power generator that provides at least one of electrical and thermal power comprising (i) at least one reaction cell for the catalysis of atomic hydrogen to form hydrinos identifiable by unique analytical and spectroscopic signatures, (ii) a reaction mixture comprising at least two components chosen from: a source of H20 catalyst or H20 catalyst; a source of atomic hydrogen or atomic hydrogen; reactants to form the source of H20 catalyst or H20 catalyst and a source of atomic hydrogen or atomic hydrogen; and a molten metal to cause the reaction mixture to be highly conductive, (iii) a molten metal injection system comprising at least one pump such as an electromagnetic pump that causes a plurality of molten metal streams to intersect, (iv) an ignition system comprising an electrical power source that provides low-voltage, high-current electrical energy to the plurality of intersected molten metal streams to ignite a plasma to initiate rapid kinetics of the hydrino reaction and an energy gain due to forming hydrinos, (v) a source of H2 and 0 2 supplied to the plasma, (vi) a molten metal recovery system, and (vii) a power converter capable of (a) converting the high- power light output from a blackbody radiator of the cell into electricity using concentrator thermophotovoltaic cells or (b) converting the energetic plasma into electricity using a magnetohydrodynamic converter. MAGNETOHYDRODYNAMIC ELECTRIC POWER GENERATOR ov o v
Absstract of: AU2024305642A1
The invention relates to a method (100) for producing hydrogen and/or oxygen by means of electrolysis, in which an electrolysis unit (10) is supplied with a direct current (2) which is provided from an alternating current (1) using a rectifier (20), wherein the electrolysis unit (10) is supplied with water using a water circuit (110). The rectifier (20) is cooled using a cooling water which is provided using a sub-flow (5) of water being conducted in the water circuit (110) and/or water supplied to the water circuit. The invention likewise relates to a corresponding system.
Absstract of: AU2024224224A1
In a gas pressure balance method in an electrolyser system a predefined pressure difference between pressures in an oxygen gas separation tank and a hydrogen gas separation tank is maintained by controlled release of gases through an oxygen back pressure valve and a hydrogen back pressure valve. in a first step, for each of the oxygen back pressure valves and the hydrogen back pressure valves, a predefined, calibrated pilot gas pressure is generated and in a second step, the predefined, calibrated pilot gas pressures are forwarded to the respective back pressure valves and in a third step, hydrogen and oxygen gasses are released whenever the gas pressures in the hydrogen and oxygen separation tanks exceeds the predefined, calibrated pilot pressure in the respective pilot gas streams.
Absstract of: CN120936752A
A feed water preparation system in a water electrolyser, suitable for producing hydrogen and oxygen using alkaline water in one or more pressurized electrolyser stacks (2), and comprising a product gas conditioning system having a safety valve blow-off stream conduit (11) connected to a feed water container (9), and/or a reduced pressure flow conduit (31) connected to a gas cleaning container on the water supply container (9).
Absstract of: WO2024231154A1
The present invention relates to a hydrogen gas production assembly comprised of a hydrogen gas production device, a container comprising an aqueous electrolyte solution, a storage container for storing produced hydrogen gas an input providing the aqueous electrolyte solution from the container to the hydrogen gas production device and an output for transferring produced hydrogen gas from the hydrogen gas production device to the storage container. The present invention further relates to methods for the production of hydrogen gas via the hydrogen gas production assembly.
Nº publicación: KR20260004370A 08/01/2026
Applicant:
주식회사다이셀도쿠리츠다이가쿠호징가나자와다이가쿠
Absstract of: CN120981281A
Provided is a reduction device which can be manufactured inexpensively and easily, has a wide reaction field, enables a reduction reaction even with low-energy light rays such as visible light, and has a long catalyst life. The reduction device of the present disclosure is characterized by containing diamond particles. It is preferable that the diamond particles are contained in the form of a diamond particle dispersion. It is preferable that the diamond particles include nanodiamond particles having a particle diameter of 1 mu m or less. It is preferable that the diamond particles comprise detonation nanodiamond particles.