Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 598 results.
LastUpdate Updated on 23/12/2025 [06:59:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Results 200 to 225 of 598 nextPage  

MOF Photocatalyst Comprising MOF-Based Trimetallic Complex and Hydrogen Evolution Reaction Using the Same

Publication No.:  KR20250164535A 25/11/2025
Applicant: 
UNIV OF SEOUL INDUSTRY COOPERATION FOUNDATION [KR]
\uC11C\uC6B8\uC2DC\uB9BD\uB300\uD559\uAD50 \uC0B0\uD559\uD611\uB825\uB2E8
KR_20250164535_PA

Absstract of: KR20250164535A

본 발명은 MOF 기반 삼중 금속 복합체를 포함하는 광촉매 및 이를 이용한 수소의 생산방법에 관한 것으로, 더욱 상세하게는 한 가지의 전이금속을 사용하는 것이 아닌 다양한 전이금속을 사용함으로써 에너지 준위를 변화시켜 밴드갭을 감소시키고, 더 적은 빛으로 많은 수소를 생산할 수 있는 효과가 있다.

Preparation method of highly durable low hydrogen permeability composite electrolyte membrane for water electrolysis and composite electrolyte membrane therefrom

Publication No.:  KR20250165094A 25/11/2025
Applicant: 
한국화학연구원

Absstract of: KR20250165094A

본원 발명은 수전해용 고내구성 저수소투과성 복합 전해질막의 제조방법 및 이로부터 제조된 수전해용 복합 전해질막에 대한 것으로, 보다 구체적으로는 고분자 전해질, 라디칼 스캐빈저(radical scavenger); 및 용매를 포함하는 혼합물을 준비하는 단계; 상기 혼합물을 볼밀(ball-mill)하여 고분산 혼합물을 제조하는 단계; 및 상기 고분산 혼합물로 전해질막을 제조하는 제막 단계를 포함하는 것을 특징으로 하는 수전해용 복합 전해질막의 제조방법에 대한 것이다.

Hydrogen and oxygen generator for medical applications

Publication No.:  PL448633A1 24/11/2025
Applicant: 
INST TECHNIKI GORNICZEJ KOMAG [PL]
KLOSZCZYK BRUNON [PL]
ZIELINSKI GRZEGORZ [PL]
ZORYCHTA GRZEGORZ [PL]
PTASZYNSKA MALGORZATA [PL]
HELINSKI MAREK [PL]
INSTYTUT TECHNIKI G\u00D3RNICZEJ KOMAG,
KLOSZCZYK BRUNON,
ZIELI\u0143SKI GRZEGORZ,
ZORYCHTA GRZEGORZ,
PTASZY\u0143SKA MA\u0141GORZATA,
HELI\u0143SKI MAREK
PL_448633_A1

Absstract of: PL448633A1

Przedmiotem zgłoszenia jest generator wodoru i tlenu dla zastosowań medycznych, wytwarzający gaz HHO na drodze reakcji utleniania-redukcji elektrolitu po doprowadzeniu do elektrod potencjału anody i katody. Generator ma dwie płaskie anody (13) i jedną katodę (14) oraz między nimi blachy neutralne (15), odseparowane od siebie dielektrycznymi przekładkami (3), połączone poprzez dwa współosiowe otwory w jeden zespół śrubami scalającymi elektrody (9) i na każdą śrubę (9) nasunięta jest rurka izolacyjna (16) separująca śrubę od katody (14) oraz przekładek (3) i śruby (9) łączą elektrycznie ze sobą obie anody (13) i generator umieszczony jest w szklanym pojemniku na elektrolit (1), zamkniętym szczelnie od dołu pokrywą dolną (5), a do górnej części pojemnika (1) przymocowana jest szczelnie pokrywa górna (4), gdzie w pokrywie górnej (4) umieszczone są szczelnie w dedykowanych otworach śrubowe przyłącza anody (6), katody (7) oraz przewód odprowadzający gaz HHO, przy czym katoda (14) oraz jedna z anod (13) posiadają sztywne wyprowadzenia elektrycznie połączone odpowiednio z przyłączem katody (7) oraz przyłączem anody (6) i śrubowe przyłącza anody (13) i katody (14), odpowiednio (6 i 7), stanowią mocowanie generatora do pokrywy górnej (4).

PEROVSKITE-BASED PHOTOELECTRODE AND PHOTOELECTROCHEMICAL WATER SPLITTING SYSTEM USING THEREOF

Publication No.:  KR20250164032A 24/11/2025
Applicant: 
울산과학기술원
WO_2025239623_PA

Absstract of: WO2025239623A1

The present invention relates to a photoelectrode and a photoelectrochemical water splitting system using same, and more specifically, to a photoelectrode in which a lower electrode, an electron transport layer including SnO2, a light absorption layer including FAPbI3, a hole transport layer, an upper electrode, and a Ni passivation thin film layer are sequentially stacked and can operate when immersed in water, and an efficient and stable large-area water splitting system capable of splitting water and producing hydrogen without an external voltage by using the photoelectrode.

Proceso de descomposición de amoniaco (NH3) en fase acuosa para la obtención de hidrógeno (H2)

Publication No.:  ES3042960A1 24/11/2025
Applicant: 
UNIV MADRID AUTONOMA [ES]
Universidad Aut\u00F3noma de Madrid

氢气生成组合物及其制造方法、以及氢气的生成方法

Publication No.:  CN120987259A 21/11/2025
Applicant: 
丰田自动车株式会社
CN_120987259_A

Absstract of: CN120987259A

本发明涉及氢气生成组合物及其制造方法、以及氢气的生成方法。本发明提供能够以高收率和高生成量生成氢气的手段。本发明的一个方式涉及一种氢气生成组合物,其含有粉体形态的氢化镁和粉体形态的柠檬酸,柠檬酸相对于氢化镁的质量比为2.5~3.5的范围,所述氢气生成组合物为加压成型物形态。本发明的另一方式涉及氢气生成组合物的制造方法和氢气的生成方法。

电解系统的控制装置及电解系统

Publication No.:  CN120989668A 21/11/2025
Applicant: 
本田技研工业株式会社
CN_120989668_PA

Absstract of: US2025361635A1

A control device for an electrolysis system includes a deterioration prediction unit that predicts a degree of deterioration of each of a water electrolysis stack and a compression stack, and a supplied electrical current control unit that controls an electrical current that is supplied to the water electrolysis stack and an electrical current that is supplied to the compression stack, wherein the supplied electrical current control unit controls the electrical current that is supplied to the stack having a larger degree of deterioration from among the water electrolysis stack and the compression stack to be constant, and adaptively controls the electrical current that is supplied to the stack having a smaller degree of deterioration from among the water electrolysis stack and the compression stack.

加圧型電解装置のセル積層体のためのセルフレーム及び複数のセルフレームを含む電解装置セル積層体

Publication No.:  JP2025538041A 21/11/2025
Applicant: 
グリーン・ハイドロジェン・システムズ・アクシェセルスケープ
JP_2025538041_PA

Absstract of: AU2023381476A1

A cell frame adapted for use in a pressurised electrolyser cell stack is provided. From an inner circumferential rim of the cell frame, a circumferential radial shelf with inwardly tapering thickness is provided, such that an annular space between a circumferential radial shelf and a neighbouring circumferential radial shelf is provided when cell frames are stacked in alignment with each other, and that outwardly of the circumferential radial shelf, a mobility link is provided which connects the radial shelf to the remaining cell frame.

탄소계 층으로 코팅된 부품

Publication No.:  KR20250163932A 21/11/2025
Applicant: 
HYDROMECANIQUE & FROTTEMENT [FR]
\uC774\uB4DC\uB7EC\uBA54\uAE4C\uB2C8\uB044 \uC5D0 \uD504\uB7EC\uB728\uB9DD
KR_20250163932_PA

Absstract of: WO2024189288A1

The invention relates to a part comprising a metal substrate and a layer of material based on amorphous carbon having sp2 hybridised bonds and sp3 hybridised bonds, wherein the layer has: - a first content of sp3 hybridised bonds on the substrate side; and - a second content of sp3 hybridised bonds on the side of an outer surface of the layer; - the first content being greater than the second content, characterised in that an average content within the layer of sp3 hybridised bonds is between 5% and 65%, and preferably between 5% and 45%, and in that the content of sp3 hybridised bonds changes continuously within the layer.

SYSTEM AND METHOD FOR STABILIZING THE OPERATION OF FACILITIES USING HYDROGEN PRODUCED BY LOW CARBON SOURCES

Publication No.:  KR20250163830A 21/11/2025
Applicant: 
켈로그브라운앤드루트엘엘씨
AU_2025203497_A1

Absstract of: AU2025203497A1

A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit 5 for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating 10 target hydrogen flows. A system and a method for stabilizing hydrogen flow to a downstream process in a 5 facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream 10 process, and controlling the operation of the downstream process based on the operating target hydrogen flows. ay a y

ELECTROCHEMICAL SYSTEM

Publication No.:  KR20250163733A 21/11/2025
Applicant: 
현대자동차주식회사기아주식회사
US_2025354272_PA

Absstract of: US2025354272A1

Provided is an electrochemical system comprising a water electrolysis stack with an anode and a cathode. The system includes a reaction fluid supply line that supplies a reaction fluid to the anode, a first gas-liquid separator located in the reaction fluid supply line to separate the reaction fluid into gaseous and liquid components, and a first filter part positioned upstream of the first gas-liquid separator to filter the reaction fluid. The system further includes a first circulation line that circulates the liquid reaction fluid from the anode back to the first gas-liquid separator. Additionally, a second gas-liquid separator in a discharged fluid discharge line is connected to the cathode, with a second circulation line configured to maintain the ionic purity of the discharged fluid. The system also includes a mechanism to monitor ionic conductivity and selectively control the operation of the water electrolysis stack based on detected ionic levels.

Electrode for Water Electrolysis and Water Electrolysis Cell Comprising the Same

Publication No.:  KR20250163681A 21/11/2025
Applicant: 
LG CHEMICAL LTD [KR]
\uC8FC\uC2DD\uD68C\uC0AC \uC5D8\uC9C0\uD654\uD559
KR_20250163681_PA

Absstract of: KR20250163681A

본 발명은 CCS 구조 및 CCM 구조가 동시에 적용되고, 원자막 증착법을 이용하여CCS 구조에서 다공성 기재의 일부 영역만이 코팅되도록 함으로서 적은 양의 촉매 사용량으로도 우수한 활성을 구현할 수 있는 수전해용 전극 및 이를 포함하는 수전해 셀에 관한 것이다.

COMPOSITE FOR ELECTROCATALYSIS AND PREPARATION METHOD THEREOF

Publication No.:  US2025354279A1 20/11/2025
Applicant: 
HYDROLYZER DOO [RS]
Hydrolyzer DOO
EP_4650493_A1

Absstract of: US2025354279A1

The present invention relates to a method of preparing a composite material, in particular one useful as a catalyst in an electrolytic hydrogen evolution reaction and/or the oxygen evolution reaction and/or urea oxidation-assisted water electrolysis. Provided is a method of preparing a composite material, the method comprising the steps of:(i) electrochemically depositing material onto a substrate from a deposition solution comprising a nickel (II) salt and graphene oxide, to obtain a nickel-reduced graphene oxide composite material comprising nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate;(ii) after step (i), placing the substrate, having the nickel-reduced graphene oxide composite deposited thereon, in an alkaline solution along with a counter electrode; and(iii) after step (ii), partially electrochemically oxidising the nickel, to obtain a partially oxidised nickel-reduced graphene oxide composite material comprising partially oxidised nickel dispersed on reduced graphene oxide, said composite material being deposited on the substrate.The composite of the invention demonstrates high catalytic activity for electrolytic hydrogen production under alkaline water electrolysis conditions (for example, a hydrogen evolution current of up to 500 mA cm−2 at −1.35 V against a Reversible Hydrogen Electrode). High activity is demonstrated even when the substrate (on which the composite is deposited) does not contain any, or at m

전해조 시스템

Publication No.:  KR20250163344A 20/11/2025
Applicant: 
케레스인텔렉츄얼프로퍼티컴퍼니리미티드
CN_120882908_PA

Absstract of: AU2024237817A1

The present invention relates to an electrolyser system (10) comprising at least one electrolyser (20), the electrolyser (20) comprising at least one steam inlet (41) and at least one off-gas outlet (38; 39), and a turbocharger (62) for compressing off-gas from the electrolyser (20). The turbocharger (62) comprises a drive fluid inlet, a drive fluid outlet, a compression fluid inlet, a compressed fluid outlet, a compressor (13) and a turbine (12). The turbine (12) is configured to drive the compressor (13). The drive fluid outlet of the turbocharger (62) is fluidically connected to the at least one steam inlet (41) of the electrolyser (20). The at least one off-gas outlet (38; 39) of the electrolyser (20) is fluidically connected to the compression fluid inlet of the turbocharger (62). The system (10) can further can comprise a steam source fluidically connected to the drive fluid inlet of the turbocharger (62) for powering the turbine (12) using pressurised steam.

HYDROGEN AND OXYGEN DEPLETING SYSTEM WITHIN A WATER ELECTROLYSIS INSTALLATION AND RELATED PROCESS

Publication No.:  US2025354283A1 20/11/2025
Applicant: 
TOTALENERGIES ONETECH [FR]
TotalEnergies OneTech
CN_120967379_PA

Absstract of: US2025354283A1

A water electrolysis installation includes a dioxygen separator configured to separate a mixture of electrolyte and dioxygen and to obtain an electrolyte with dissolved dioxygen; a dihydrogen separator to separate a mixture of electrolyte and dihydrogen and to obtain an electrolyte with dissolved dihydrogen; a recombination zone configured to receive the electrolytes to produce, at a mixing region, a mixed electrolyte stream. The installation includes a dihydrogen and/or dioxygen depleting system, including a catalyst configured to react dioxygen and dihydrogen dissolved in the mixed electrolyte stream, to produce a treated electrolyte stream with reduced dioxygen and dihydrogen. The depleting system is positioned in contact with the mixed electrolyte stream downstream of the mixing region and upstream of the inlet of the electrochemical stack device.

Framing Structure For An Electrolyser

Publication No.:  US2025354276A1 20/11/2025
Applicant: 
VIERING JENTSCHURA & PARTNER MBB PATENT UND RECHTSANWAELTE [DE]
Viering, Jentschura & Partner mbB Patent- und Rechtsanw\u00E4lte
CA_3247505_A1

Absstract of: US2025354276A1

The present invention relates to a framing structure for an electrolyser subject to internal pressure, able to withstand corrosive environments and radial pressure forces. The present invention also relates to an electrolytic cell and electrolyser equipped with said framing structure, as well as its use in high-pressure water electrolysis applications.

ELECTROCHEMICAL WATER SPLITTING WITH A NIVOX CATALYST

Publication No.:  US2025354278A1 20/11/2025
Applicant: 
UNIV KING FAHD PET & MINERALS [SA]
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
US_2025354278_PA

Absstract of: US2025354278A1

An electrocatalyst and a method of preparing the electrocatalyst are described. The electrocatalyst includes a porous foam substrate; and a catalytically active layer comprising NiVOx nanostructures, the catalytically active layer being disposed on an exterior surface and an interior pore surface of the porous metal foam substrate; where “x” is in the range of 1 to 3. A method of using the electrocatalyst for water oxidation is also described.

SYSTEM AND METHOD FOR INCREASING HYDROGEN PRODUCTION IN ELECTROLYZERS

Publication No.:  US2025354280A1 20/11/2025
Applicant: 
T C ERCIYES UNIV [TR]
T.C. ERCIYES UNIVERSITESI
JP_2025520258_PA

Absstract of: US2025354280A1

Polymer electrolysis membrane (PEM) or alkali electrolyzers are provided. The PEM or alkali electrolyzers have a compact structure that produces high-purity hydrogen and a device and method for increasing the hydrogen production efficiency of these devices. An electrolyzer control circuit includes: an electrolysis cell, a mosfet, a square wave oscillator integration, a potentiometer, a mosfet driver integration, a first resistance, a second resistance, a first adjustable direct current power supply, a second adjustable direct current power supply, and an oscilloscope.

LUNAR WATER COLLECTION DEVICE

Publication No.:  US2025354490A1 20/11/2025
Applicant: 
BLUE ORIGIN MFG LLC [US]
Blue Origin Manufacturing, LLC
US_2024035379_PA

Absstract of: US2025354490A1

Techniques and systems extract water from lunar regolith using microwave radiation and may also produce fuel from the extracted water. The system can distill the extracted water to remove impurities before electrolyzing the purified water into oxygen and hydrogen gases, which may then be cooled to form liquid oxygen and liquid hydrogen. A portion of the system may reside on a lunar landing module. Another portion of the system may be affixed to a robotic arm that is extendable from the lunar landing module. This portion of the system includes a water extraction unit, comprising a cone used as a cold trap. The cone may include cooling channels to keep the temperature of the smooth inner surface of the cone cold enough to trap particles of frost that attach to the inner surface. The frost is then scraped from the inner surface and collected.

CATALYTIC COMPOSITIONS AND METHODS OF PREPARING THEREOF

Publication No.:  WO2025239840A1 20/11/2025
Applicant: 
NATIONAL UNIV OF SINGAPORE [SG]
NATIONAL UNIVERSITY OF SINGAPORE
WO_2025239840_PA

Absstract of: WO2025239840A1

The invention provides a catalytic composition, the catalytic composition comprising copper oxide nanoparticles, carbon black, and a binder. The invention also provides a catalyst, an electrode and an electrolyser comprising the catalytic composition. In addition, the invention provides a method of preparing a catalytic composition, the method comprising (a) providing a binder in a solvent to provide a binder mixture; (b) incorporating carbon black into the binder mixture; (c) incorporating copper oxide nanoparticles into the binder mixture; and (d) stirring the mixture to form a composite material of the binder, carbon black, and copper oxide nanoparticles. The invention also provides a method of producing hydrogen comprising contacting an aqueous electrolyte with the catalytic composition, the catalyst, or the electrode, and applying a voltage sufficient to split water into hydrogen and oxygen.

SYSTEM AND METHOD FOR STABILIZING THE OPERATION OF FACILITIES USING HYDROGEN PRODUCED BY LOW CARBON SOURCES

Publication No.:  WO2025240177A1 20/11/2025
Applicant: 
KELLOGG BROWN & ROOT LLC [US]
KELLOGG BROWN & ROOT LLC
WO_2025240177_PA

Absstract of: WO2025240177A1

A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating target hydrogen flows.

PEROVSKITE PHOTOELECTRODE AND PHOTOELECTROCHEMICAL WATER SPLITTING SYSTEM USING SAME

Publication No.:  WO2025239623A1 20/11/2025
Applicant: 
UNIST ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECH [KR]
\uC6B8\uC0B0\uACFC\uD559\uAE30\uC220\uC6D0
WO_2025239623_PA

Absstract of: WO2025239623A1

The present invention relates to a photoelectrode and a photoelectrochemical water splitting system using same, and more specifically, to a photoelectrode in which a lower electrode, an electron transport layer including SnO2, a light absorption layer including FAPbI3, a hole transport layer, an upper electrode, and a Ni passivation thin film layer are sequentially stacked and can operate when immersed in water, and an efficient and stable large-area water splitting system capable of splitting water and producing hydrogen without an external voltage by using the photoelectrode.

HYDROGEN PRODUCTION CONTROL SYSTEM AND METHOD

Publication No.:  WO2025239029A1 20/11/2025
Applicant: 
HITACHI LTD [JP]
\u682A\u5F0F\u4F1A\u793E\u65E5\u7ACB\u88FD\u4F5C\u6240
WO_2025239029_PA

Absstract of: WO2025239029A1

Provided is a hydrogen production control system for producing hydrogen with different environmental impacts. A hydrogen production control system 20 causes a hydrogen production apparatus 10 to produce hydrogen. The hydrogen production apparatus inputs, to a water electrolysis device 13, a power amount from a renewable energy generation device 12 or a power amount from a power grid 30, and causes the water electrolysis device to electrolyze water to thereby produce hydrogen with different environmental impacts. The hydrogen production apparatus comprises: a renewable energy variation amount prediction unit which predicts variation in the power amount from the renewable energy power generation device; and a type-specific hydrogen production planning unit which creates a type-specific hydrogen production plan for producing hydrogen with different environmental impacts by the hydrogen production apparatus, on the basis of a prediction result from the renewable energy variation amount prediction unit. The type-specific hydrogen production planning unit creates a production plan for producing a first type of hydrogen with a small environmental impact among hydrogen with different environmental impacts by using a power amount in a first case where the power amount from the renewable energy generation device is predicted to be supplied stably.

METHOD FOR MANUFACTURING ELECTROCHEMICAL REACTION DEVICE, AND ELECTROCHEMICAL REACTION DEVICE

Publication No.:  WO2025239002A1 20/11/2025
Applicant: 
DENSO CORP [JP]
\u682A\u5F0F\u4F1A\u793E\u30C7\u30F3\u30BD\u30FC
WO_2025239002_PA

Absstract of: WO2025239002A1

Provided is a method for manufacturing an electrochemical reaction device (1) comprising: an electrochemical cell (2) that includes an electrolyte layer (20), a first electrode (21), and a second electrode (22); a frame (3) that includes a support section (31) and a frame body section (32); and a sealing plate (4) that hermetically separates a second space (122) and an outer peripheral cavity (11) from each other. The sealing plate (4) includes an outer peripheral plate section (42), an inner peripheral plate section (41), and a coupling section (43). The coupling section (43) includes a flexed section (430) flexed so as to protrude in a normal direction Z of the electrolyte layer (20). When forming the flexed section (430), the sealing plate (4), in which the flexed section (430) has not yet been formed, is fixed to the electrochemical cell (2) and the frame (3), and then a buckling step is performed for causing the coupling section (43) to buckle so as to form the flexed section (430) by causing a volume change of at least one of the electrochemical cell (2), the frame (3), or the sealing plate (4).

INTEGRATED SYSTEM FOR PREPARING HYDROGEN AND A DEHYDROGENATED PRODUCT FROM AN ALCOHOL

Nº publicación: WO2025238525A1 20/11/2025

Applicant:

TERNARY KINETICS LTD [NZ]
TERNARY KINETICS LIMITED

WO_2025238525_PA

Absstract of: WO2025238525A1

The invention provides an integrated system for preparing a dehydrogenated product from an alcohol, the integrated system comprising a heat integration system for heat transfer from at least one heat source to the at least one heat sink. The at least one heat sink includes a feed stream comprising an alcohol and/or an electrolyser system having an electrochemical cell configured for carrying out a partial dehydrogenation process to produce a product stream comprising hydrogen and a co-product stream comprising a dehydrogenated product from the alcohol of the feed stream and/or an infrastructure for handling and/or storing the co- product stream. The at least one heat source includes a hydrogen fuel cell for generating electricity from the product stream of the electrolyser system, wherein operation of the hydrogen fuel cell generates heat, and/or the electrolyser system, wherein the electrolyser system is configured to operate the electrochemical cell so as to generate heat.

traducir