Absstract of: WO2025195607A1
A system for producing hydrogen gas by reacting silicon and water, comprises a reaction chamber, a water supply device, configured for supplying water to the reaction chamber, a silicon supply device, configured for supplying silicon to the reaction chamber, a hydrogen collection arrangement, configured for collecting hydrogen gas from the reaction chamber and supplying said hydrogen gas via a main output channel to an application hydrogen consumer, and a controller, configured to control at least one of the water supply device, the silicon supply device and the hydrogen collection arrangement. The disclosure provides a system and methods for producing hydrogen gas by reacting silicon and water. The disclosure further provides a vehicle comprising said system and a portable device comprising said system.
Absstract of: WO2025195608A1
A system for producing hydrogen gas by reacting a metal selected from a group consisting of aluminum, magnesium, calcium, lithium, potassium and sodium and water, comprises a reaction chamber, a water supply device, configured for supplying water to the reaction chamber, a metal supply device, configured for supplying metal to the reaction chamber, a hydrogen collection arrangement, configured for collecting hydrogen gas from the reaction chamber and supplying said hydrogen gas via a main output channel to an application hydrogen consumer, and a controller, configured to control at least one of the water supply device, the metal supply device and the hydrogen collection arrangement. The disclosure provides a system and methods for producing hydrogen gas by reacting metal and water. The disclosure further provides a vehicle comprising said system and a portable device comprising said system.
Absstract of: WO2025195682A1
The invention relates to a method and a device for synthesizing ammonia (8), wherein a gas mixture (1) comprising hydrogen and nitrogen is provided with a temporally fluctuating mass flow in order to form an ammonia synthesis gas (3), which is converted into an ammonia-containing synthesis product (5) in an ammonia reactor (R) after a compression step (V2) and from which a recycled gas (2) comprising hydrogen and nitrogen is separated in order to be returned via a return line in order to form the ammonia synthesis gas (3), the mass flow of the recycled gas (2) being controlled via an adjustable throttle device (b) which is provided in the return line (2) and is integrated into a control circuit as an actuator. The invention is characterized in that the control circuit is designed with a higher-level closed-loop control system that outputs an actuating signal, which is based on the load of the ammonia reactor, for changing the degree of opening of the throttle device (b), said actuating signal being corrected by a PID control circuit in such a way that the pressure in the ammonia reactor (R) is always within a specified value range.
Absstract of: DE102024202621A1
Die vorgestellte Erfindung betrifft ein Verfahren (100) zum Betreiben eines Elektrolysesystems (200), wobei das Verfahren (100) das Verdampfen (101) einer Flüssigkeit in einem Zellstapel (101) des Elektrolysesystems (200), um eine Temperatur einer Zelle (300) des Elektrolysesystems (200) einzustellen und das Kontrollieren (103) des Verdampfens der Flüssigkeit durch Einstellen eines Drucks und/oder einer Temperatur in dem Zellstapel (201) umfasst.
Absstract of: DE102024202623A1
Die Erfindung betrifft ein Verfahren zur Herstellung einer Elektrolysezelle (1), aufweisend eine Membran (2) sowie beidseits der Membran (2) angeordnete Schichten und/oder Lagen (3, 4, 5, 6) zur Ausbildung einer Anode (A) und einer Kathode (K), wobei mindestens einer Schicht und/oder Lage (3, 4, 5, 6) die Funktion eines Nukleierungshilfsmittels aufgeprägt wird, indem- die Schicht und/oder Lage (3, 4, 5, 6) aus einem Nukleierungsmaterial hergestellt wird,- ein Nukleierungsmaterial in die Schicht und/oder Lage (3, 4, 5, 6) ein- oder aufgebracht wird,- eine Kavitäten (7) ausbildende Oberflächenstruktur in die Schicht und/oder Lage (3, 4, 5, 6) eingebracht wird und/oder- die Schicht und/oder Lage (3, 4, 5, 6) hydrophob eingestellt wird, vorzugsweise mit Hilfe eines Nukleierungsmaterials.Die Erfindung betrifft ferner eine Elektrolysezelle (1) für einen Elektrolyse-Stack zur Herstellung von Wasserstoff.
Absstract of: DE102024202622A1
Die vorgestellte Erfindung betrifft ein Verfahren (100) zum Betreiben eines Elektrolysesystems (200).Das vorgestellte Verfahren (100) umfasst das Verdampfen (101) eines Elektrolyten in einem Zellstapel (101) des Elektrolysesystems (200), um eine Temperatur einer Zelle (300) des Elektrolysesystems (200) einzustellen und das Kontrollieren (103) des Verdampfens des Elektrolyten durch Einbringen eines Gasmassenstroms in das Elektrolysesystem (200), um einen Dampfpartialdruck in dem Zellstapel (201) einzustellen.
Absstract of: US2025297380A1
An electrolyzer for producing hydrogen and a method for the production of hydrogen. The electrolyzer for producing hydrogen comprises a plurality of electrolysis cells arranged in a plurality of planes, each having at least one anode and one cathode and a proton exchange membrane between the anode and the cathode. The proton exchange membranes forming respective active area regions. At least one electrolysis cell has a plurality of active area regions arranged substantially in a plane.
Absstract of: US2025296839A1
Oxygen generators and methods related to the generation of oxygen using activated aluminum alloys and inorganic acids such as nitric acid are generally described. In some embodiments, aluminum nitrate is thermally decomposed to produce oxygen and nitrogen dioxide. The nitrogen dioxide may also optionally be used to produce oxygen gas. In some embodiments, a reaction between nitric acid and an activated aluminum alloy may be used to produce the aluminum nitrate. In other embodiments, a reaction between nitric acid and aluminum hydroxide may be used to produce the aluminum nitrate.
Absstract of: US2025296836A1
In a process in which ammonia is cracked to form a hydrogen gas product and an offgas comprising nitrogen gas, residual hydrogen gas and residual ammonia gas, residual ammonia is recovered from the offgas from the hydrogen recovery process by partial condensation and phase separation, and hydrogen is recovered from the resultant ammonia-lean offgas by partial condensation and phase separation. The recovered ammonia may be recycled the cracking process and the recovered hydrogen may be recycled to the hydrogen recovery process to improve hydrogen recovery from the cracked gas. Overall hydrogen recovery from the ammonia may thereby be increased to over 99%.
Absstract of: US2025297387A1
Provided herein are catalysts for producing hydrogen via the hydrogen evolution reaction (HER) during water splitting, methods of producing hydrogen via photocatalytic water splitting using the catalysts, and compositions for use in photocatalytic water splitting that include the catalysts. In some embodiments, a catalyst hereof is a metal complex of Formula I,M(L1)(L2)A Formula Iwherein M is a transition metal, L1 and L2 are both ligands independently forming one or more coordinate bonds with the metal M, and A is an anion, andwherein L1 is a tetrapyridyl-amine (Py4N) having four pyridyl groups and an amine group each forming a coordinate bond with the metal M.
Absstract of: US2025297570A1
The present disclosure provides a renewable energy utilization system based on nitrogen-free combustion and carbon dioxide recycling. The system includes: an electrolysis unit used to electrolyze water using renewable energy to obtain hydrogen and oxygen; a carbon dioxide collection unit used to collect carbon dioxide gas released during utilization of the renewable energy; a methanol synthesis unit used to synthesize methanol using the hydrogen and the carbon dioxide gas; an internal combustion engine generator set used to perform nitrogen-free combustion of the methanol and the oxygen to generate exhaust gas and electrical energy; and a methanol reforming reaction unit used to catalyze a reforming reaction of the methanol using residual heat of the exhaust gas to obtain synthesis gas, and input the synthesis gas into the internal combustion engine generator set as a fuel for the internal combustion engine generator set.
Absstract of: US2025297385A1
A surface modification method of a nickel-based catalytic material for water electrolysis, and a catalytic material for water electrolysis are provided. The method includes: immersing a nickel-based substrate material to be modified in a first solution including a transition metal cation to allow a first modification treatment, such that a layered double hydroxide (LDH) is produced on a surface of the nickel-based substrate material; conducting a plasma etching treatment for the LDH produced on the surface of the nickel-based substrate material after the first modification treatment to produce a cation/anion double vacancy-containing LDH; and immersing the cation/anion double vacancy-containing LDH produced after the plasma etching treatment in a second solution including a high-valent metal cation to allow a second modification treatment, such that a high-valent metal single atom-containing LDH is produced. The method has advantages such as simple process, low cost, and high stability.
Absstract of: US2025296852A1
There are provided processes for preparing a metal hydroxide comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium, copper, magnesium and aluminum, the process comprising:reacting a metal sulfate comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium, copper, magnesium and aluminum with lithium hydroxide, sodium hydroxide and/or potassium hydroxide and optionally a chelating agent in order to obtain a solid comprising the metal hydroxide and a liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate;separating the liquid and the solid from one another to obtain the metal hydroxide;submitting the liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate to an electromembrane process for converting the lithium sulfate, sodium sulfate and/or potassium sulfate into lithium hydroxide, sodium hydroxide and/or potassium hydroxide respectively;reusing the sodium hydroxide obtained by the electromembrane process for reacting with the metal sulfate; andreusing the lithium hydroxide obtained by the electromembrane process for reacting with the metal sulfate and/or with the metal hydroxide.
Absstract of: US2025296846A1
The present disclosure is directed to a sub-surface geothermal ammonia production system, comprising; a geothermal well having an inlet in fluid communication with an injection bore, and an outlet in fluid communication with a production bore, the inlet configured to receive a fluid mixture of hydrogen and nitrogen, and the outlet producing a fluid ammonia; and a catalyst disposed within the geothermal well, wherein the fluid mixture of hydrogen and nitrogen is drawn into the injection bore of the geothermal well absorbing thermal energy from geology surrounding the well before entering the production bore of the geothermal well, whereby the heated fluid mixture of hydrogen and nitrogen is drawn into contact with the catalyst to convert the fluid mixture of hydrogen and nitrogen into the fluid ammonia within the well.
Absstract of: US2025297602A1
In order to provide a device for providing hydrogen by means of an electrolysis unit which allows the longest possible service life of the electrolysis unit even in case of fluctuating energy supplies to the electrolysis unit, a reciprocating piston compressor is provided to compress the hydrogen generated by the electrolysis unit, the reciprocating piston compressor having at least one automatic intake valve. A unloader is provided in order to hold the intake valve selectively in an open position, an electrically actuatable actuator is provided to activate the unloader, and a control unit is provided to control the actuator, the control unit being designed to actuate the actuator in such a way that an outlet pressure (p1) of the hydrogen at the outlet of the electrolysis unit, or a differential pressure (Δp) between an anode and a cathode of the electrolysis unit, is adjustable to a predefined target value (p1_target, Δp_target).
Absstract of: US2025297379A1
The present invention relates to an electrolysis system (10), an electrolysis plant (30) with an electrolysis system (10) and a synthesis system (20) and a method (1000) for generating synthesis gas by means of the electrolysis system (10).
Absstract of: CN119020426A
Methods and systems for generating hydrogen from carbon dioxide are disclosed. Methods and systems for generating a hydrogen stream from a carbon dioxide gas stream include converting a first spent carbon dioxide gas stream to an organic feedstock using an algae source in a photosynthesis step. The organic feedstock is then converted into a hydrogen stream and gaseous by-products using organisms in a biological decomposition step. The generated hydrogen may then be collected.
Absstract of: US2025283230A1
A method for producing an electrolysis cell includes a joining step of joining a frame portion of a protective sheet member provided between a membrane electrode assembly and a fluid-supply-side current collector to a portion of the membrane electrode assembly on the outer side of the covered portion where an electrolyte membrane is covered with an electrode catalyst layer to form a joint, and a joined body stacking step of stacking the membrane electrode assembly and the protective sheet member joined together on the fluid-supply-side current collector with the protective sheet member facing the fluid-supply-side current collector.
Absstract of: WO2025191937A1
In the present invention, a third catalyst that promotes the bonding of hydrogen and oxygen is disposed on the anode side of an electrolyte membrane (51). Even when hydrogen generated on the cathode side passes through the electrolyte membrane (51) and enters the anode side, the action of the third catalyst enables said hydrogen to bond with oxygen generated on the anode side, thereby converting into water. This makes it possible to reduce the concentration of hydrogen in the gas discharged from the anode side. Particles of the third catalyst have a hollow structure with a cavity therein. Therefore, the amount of the third catalyst used can be reduced while maintaining the surface area of the particles. Additionally, because the particles of the third catalyst have an opening, the movement of water, hydrogen, and oxygen at the anode side is less likely to be inhibited. Accordingly, reductions in the reaction rate of electrolysis on the anode side can be suppressed.
Absstract of: WO2025199193A1
Provided herein are catalysts for producing hydrogen via the hydrogen evolution reaction (HER) during water splitting, methods of producing hydrogen via photocatalytic water splitting using the catalysts, and compositions for use m photocatalytic water splitting that include the catalysts. In some embodiments, a catalyst hereof is a metal complex of Formula (I): M(L1)( L2)A, wherein M is a transition metal, L1 and L2 are both ligands independently forming one or more coordinate bonds with the metal M, and A is an anion, and wherein L1 is a tetrapyridyl-amine (Py4N) having four pyridyl groups and an amine group each forming a coordinate bond with the metal M.
Absstract of: WO2025199135A1
Disclosed are electrodes comprising a conductive support substrate having an electrocatalyst coating containing crystalline molybdenum phosphides (MoxPy) in size ranging from micro- to nano-particles. The conductive supporting substrate is capable of incorporating a material to be reduced, such as CO2 or CO. Also disclosed are electrochemical methods for generating oxyhydrocarbons from CO2 or CO using water as a source of hydrogen.
Absstract of: WO2025194821A1
Disclosed in the present application are an alkali-containing wastewater zero discharge device and method for water electrolysis-based hydrogen production. The device comprises a hydrogen-side water seal device, a hydrogen-side degassing device, a waste alkali collecting tank, a waste alkali pump, an oxygen-side water seal device, and an oxygen-side degassing device. A hydrogen-side liquid phase outlet pipeline of the hydrogen-side degassing device goes downhill and extends inwards to the waste alkali collecting tank; an oxygen-side liquid phase outlet pipeline of the oxygen-side degassing device goes downhill and extends inwards to the waste alkali collecting tank; an exhausting pipeline of the waste alkali collecting tank is communicated with the atmosphere; by means of an inlet pipeline, the waste alkali pump goes downhill and extends inwards to the waste alkali collecting tank, and an outlet of the waste alkali pump is communicated with any one of a water supplementing tank, an alkali blending tank or an alkali transporting tank vehicle. In the present invention, on the premise of ensuring safety and saving investment and an occupied space, alkali-containing wastewater is recycled to serve as a raw material, thereby realizing zero discharge of alkali-containing wastewater; in addition, a centralized alkali-containing wastewater collecting system is designed, so that hydrogen-side and oxygen-side alkali-containing wastewater respectively pass through respective water seal
Absstract of: WO2025194940A1
A seawater treatment system and a seawater treatment method, which are used to solve the technical problem of a low degree of resource utilization of seawater in the prior art. The seawater treatment system comprises: a filtration device, which is used for removing solid particle impurities from seawater and outputting filtered water; a nanofiltration device, which is used for separating and filtering out monovalent ions and multivalent ions from the filtered water and outputting a nanofiltration permeate and a nanofiltration concentrate; a softening device, which is used for removing multivalent ions from the nanofiltration concentrate and outputting softened water; an electrolytic hydrogen production device, which is used for decomposing organic matter in the nanofiltration permeate, producing hydrogen and outputting electrolyzed water; and a desalting device, which is used for separating salt from fresh water in the electrolyzed water, wherein an anode (12) and a cathode (13) of the electrolytic hydrogen production device are staggered, the cathode (13) is of a hollow structure having a shell layer (131) and a hollow layer (132), the hollow structure has an opening (133), an exhaust structure is arranged on the shell of an electrolytic cell, and the opening (133) outputs hydrogen via the exhaust structure.
Absstract of: US2025296047A1
A carbon dioxide process apparatus includes: a recovery device that includes a carbon dioxide absorption portion which dissolves carbon dioxide in an electrolytic solution of a strong alkali and absorbs the carbon dioxide; an electrochemical reaction device to which the electrolytic solution in which the carbon dioxide is dissolved by the carbon dioxide absorption portion is supplied and which electrochemically reduces the carbon dioxide; an anion exchange type fuel cell that supplies electric energy to the electrochemical reaction device; a carbon dioxide concentration gas supply passage that supplies a carbon dioxide concentration gas generated by the fuel cell to the electrolytic solution which is discharged from the recovery device and before being supplied to the electrochemical reaction device; and a hydrogen supply passage that supplies hydrogen generated by the electrochemical reaction device to the fuel cell.
Nº publicación: US2025297393A1 25/09/2025
Applicant:
HONDA MOTOR CO LTD [JP]
HONDA MOTOR CO., LTD
Absstract of: US2025297393A1
A CO2 conversion method includes: generating CO and H2O by a RWGS reaction from CO2 and H2; generating C2H4 and H2 by CO electrolysis from the CO and H2O; and using the H2 generated by the CO electrolysis as the H2 of the RWGS reaction.