Absstract of: CN120719310A
本发明提供一种膜电极结构体的制造方法。在第1层叠体提供工序(S1a)中,提供离子交换容量小于规定值的第1离聚物原料(71)与第1电极(44)层叠而成的第1层叠体(70)。在第2层叠体提供工序(S1b)中,提供离子交换容量为规定值以上的第2离聚物原料(73)与第2电极(46)层叠而成的第2层叠体(72)。在基材提供工序(S1c)中,提供电解质基材(74)。在溶胀工序(S2)中,使第1层叠体(70)、第2层叠体(72)和电解质基材(74)溶胀。在接合工序(S3)中,将电解质基材(74)与第1层叠体(70)的第1离聚物原料(71)接合,并且将电解质基材(74)与第2层叠体(72)的第2离聚物原料(73)接合。据此,能够抑制电解效率的下降和电解质膜劣化的加剧。
Absstract of: AU2024307301A1
A method and arrangement of performing electrolysis by an electrolyzer includes an operational mode and a partial operational mode. During the operational mode operational power from a main power source (202) to a first (808) and second set of stacks (806). In response to detecting a power insufficient for the first and the second set of stacks (806) to perform electrolysis without impurities, the electrolyzer is set to a partial operational mode, wherein the first set of stacks (808) perform electrolysis without impurities and the second set of stacks (806) do not perform electrolysis.
Absstract of: US2025296836A1
In a process in which ammonia is cracked to form a hydrogen gas product and an offgas comprising nitrogen gas, residual hydrogen gas and residual ammonia gas, residual ammonia is recovered from the offgas from the hydrogen recovery process by partial condensation and phase separation, and hydrogen is recovered from the resultant ammonia-lean offgas by partial condensation and phase separation. The recovered ammonia may be recycled the cracking process and the recovered hydrogen may be recycled to the hydrogen recovery process to improve hydrogen recovery from the cracked gas. Overall hydrogen recovery from the ammonia may thereby be increased to over 99%.
Absstract of: JP2025139975A
【課題】設計の自由度を高めるとともに組立性を向上させることができるセルユニットを提供する。【解決手段】セルユニット2は、互いに背向する第1面11及び第2面12を規定する基材10と、前記第1面11から前記第2面12まで前記基材10を貫通する孔13と、前記孔13内に配置されて、前記孔13を、前記第1面11側の第1空間15と前記第2面12側の第2空間16とに仕切る膜21と、前記膜21に沿って前記第1空間15又は前記第2空間16に配置された導電性部材28,29と、を備える。【選択図】図1
Absstract of: CN120129634A
A vessel (1) for producing hydrogen, the vessel (1) comprising a hydrogen production device (13), the hydrogen production device (13) comprising a cracking unit (2) for cracking a hydrogen-based compound to produce hydrogen and a cracking product, and a filtration and purification unit (3) for separating hydrogen from the cracking product.
Absstract of: CN119948208A
Disclosed are a membrane suitable for alkaline water electrolysis and an alkaline water electrolysis device comprising the same. A method for producing hydrogen and a method for producing a membrane for alkaline water electrolysis are also disclosed.
Absstract of: CN120077013A
An apparatus (1) for producing ammonia, the apparatus comprising an ammonia reactor (44) for generating ammonia (NH3) from a synthesis gas, where the synthesis gas comprises hydrogen (H2) and nitrogen (N2); the device further comprises an electrolyser (2) for generating hydrogen and oxygen from water; wherein the device also has a compressor (6), which is fluidically connected to the electrolyser (2) and is used for compressing hydrogen gas (H2) from the electrolyser (2), and wherein the compressor (6) is used for compressing hydrogen gas (H2) that can be conveyed.
Absstract of: CN119998228A
Process A: a process for producing hydrogen from catalytic cracking of ammonia. The method includes the step of supplying a hydrogen-containing recycle gas taken downstream of an ammonia cracking reactor to one or more catalyst-containing reaction tubes disposed within the ammonia cracking reactor. The invention can be used to provide hydrogen as a carbon-free fuel.
Absstract of: CN120129568A
The invention relates to a preparation method of a NiMo-MoO3-x porous nanorod catalyst based on a metal organic framework and a non-noble metal alloy catalyst prepared by the preparation method. According to the preparation method of the non-noble metal alloy catalyst disclosed by the invention, the alloy catalyst which combines the alloy with the oxide to form the nanorod with porosity and high surface area and has excellent HER performance close to that of a commercial platinum catalyst can be prepared.
Absstract of: JP2025141058A
【課題】光触媒を用いた光利用効率の高い水分解装置を提供する。【解決手段】光によって水から水素と酸素を発生させる水分解装置であって、水素発生用光触媒と、酸素発生用光触媒と、複数の波長を含んだ光が入射する分光部材と、を有し、前記分光部材は入射した光を分光し、第一の波長帯の波長を有する光からなる第一光群を前記水素発生用光触媒に入射させ、前記第一の波長帯とは異なる波長帯である第二の波長帯の波長を有する光からなる第二光群を前記酸素発生用光触媒に入射させる。【選択図】図1
Absstract of: JP2025140193A
【課題】再生可能エネルギーによる発電電力が急激に低下しても水電解装置が故障することを防ぐ。【解決手段】本開示に係る水素製造システム10は、再生可能エネルギーによって発電された発電電力を用いて水素を製造する。水素製造システム10は、水を電気分解して水素を製造する水電解装置13と、発電電力によって充電可能であり、充電した電力を水電解装置13に供給可能な蓄電装置12と、蓄電装置12を制御する制御装置14と、を備える。制御装置14は、水電解装置13に供給される発電電力が、水電解装置13の動作電力の最大変動速度を超える速度で低下すると、不足分の電力を蓄電装置12から水電解装置13に供給させる。【選択図】図1
Absstract of: WO2025192600A1
This cell unit (2) comprises: a base material (10) that defines a first surface (13) and a second surface (14) that face each other back to back; a hole (15) that penetrates the base material (10) from the first surface (13) to the second surface (14); a film (21) that is disposed in the hole (15) and partitions the hole (15) into a first space (17) on the first surface (13) side and a second space (18) on the second surface (14) side; and an annular outer peripheral member (32) disposed around the outer peripheral surface (11a) of the base material (10).
Absstract of: WO2025192602A1
A cell unit (2) comprises: a base material (10) that defines a first surface (11) and a second surface (12) facing each other; a hole (13) that penetrates from the first surface (11) to the second surface (12); a film (21) that is disposed in the hole (13) and partitions the hole (13) into a first space (15) on the first surface (11) side and a second space (16) on the second surface (12) side; a first flow path (40) that is formed on the base material (10) and serves for introducing a first fluid into the first space (15); a second flow path (42) that is formed on the base material (10) and serves for taking out a second fluid from the second space (16); a first gasket (50) disposed on the first surface (11) and surrounding the first space (15) and the first flow path (40); and a second gasket (51) disposed on the first surface (11) and surrounding the second flow path (42) on the outside of the first gasket (50).
Absstract of: JP2025141513A
【課題】単位時間及び単位触媒質量当たりの水素生成量が改善された、アンモニアからの水素の製造方法を提供する。【解決手段】アンモニアからの水素の製造方法であって、アンモニアガスを反応器に導入し、触媒の存在下で分解して水素ガスを製造することを含み、反応器における触媒層の出口ガス温度が750℃以上であり、アンモニアガスの流量Fと前記触媒の質量Wとの比F/Wが40,000mL-NH3/(h・gcat)以上であり、触媒がNiMgO系触媒であり、NiMgO系触媒のNi含有量が1~40質量%である、アンモニアからの水素の製造方法。【選択図】図4
Absstract of: JP2025141057A
【課題】新規の手法を用いた水素発生装置を提供する。【解決手段】光源と、反射鏡と、反応管と、を含む反応装置を備える、ISプロセスを用いた水素発生装置であって、前記反応装置は、硫酸、三酸化硫黄およびヨウ化水素からなる群より選択される少なくとも一種である反応ガスの熱分解反応を実施する装置であり、前記反応管の内部には、前記光源から出射される光によって前記反応ガスを加熱する反応領域が設定されており、前記反射鏡は、前記光源から出射される光を前記反応領域に集光させる反射面を有し、前記反応管に導入された前記反応ガスを前記反応領域において熱分解する。【選択図】図2
Absstract of: JP2025140757A
【課題】syngasの水素ガスに対する一酸化炭素ガスの比率を向上させることが可能な電解システムを提供する。【解決手段】電解システムは、第1の水蒸気と第1の二酸化炭素ガスとを含有する第1の混合ガスから一酸化炭素と水素とを含む第2の混合ガスを生成する。電解システムは、第1の水蒸気の少なくとも一部と第1の二酸化炭素ガスの一部とを用いた共電解反応を行うことにより、第1の一酸化炭素ガスと第1の水素ガスとを生成する電解セルを有する、電解部と、第1の水素ガスの一部と第1の二酸化炭素ガスの他の一部または残部とから第2の一酸化炭素ガスと第2の水蒸気とを生成する逆シフト反応を促進させる触媒を有する、逆シフト反応部と、を具備する。第2の混合ガスは、第1の一酸化炭素ガスと、第2の一酸化炭素ガスと、第1の水素ガスの他の一部または残部と、を含有する。【選択図】図1
Absstract of: US2025305161A1
A differential pressure electrolysis cell for producing a gas having a higher pressure than a fluid at the second electrode by applying a voltage between a first electrode and a second electrode to electrolyze the fluid containing water and supplied to the first electrode, wherein an electrolyte membrane of the differential pressure electrolysis cell includes: a first layer facing the first electrode and having a first ion exchange capacity per unit area; and a second layer facing the second electrode and having a second ion exchange capacity per unit area, and the second ion exchange capacity is larger than the first ion exchange capacity.
Absstract of: EP4617596A1
A process for producing and liquefying hydrogen, said process comprising the following steps:- Providing an ammonia feedstock stream,- Producing a hydrogen gas product by a gas conversion,- Wherein at least part of said ammonia feedstock stream is converted by said gas conversion and/or at least part of said ammonia feedstock stream is combusted to bring heat to the process, in particular to said gas conversion,- Liquefying the hydrogen gas product at least by:∘ precooling said hydrogen gas product under conditions to precool said hydrogen gas product at a temperature between 70 kelvin and 100 kelvin, preferably around 80 kelvin and thus obtaining a precooled hydrogen product,∘ cooling the precooled hydrogen gas product under conditions effective for cooling said precooled hydrogen gas product at a temperature between 10 kelvin and 50 kelvin, preferably around 20 kelvin, and thus liquefying the hydrogen gas product to obtain liquid hydrogen,- Cooling the hydrogen gas product by heat exchange with at least part of the ammonia feedstock stream upstream the cooling of the precooled hydrogen gas product.
Absstract of: WO2025196220A1
The disclosure notably relates to a computer-implemented method for predictive maintenance of a system. The system comprises a hydrogen energy component, a cooling circuit, at least one actuator of the cooling circuit and at least one sensor collecting operating data during an operating of the system. The method comprises, during the operating of the system, the following three steps. The method comprises a first step of obtaining the operating data collected by to the at least one sensor. The method comprises a second step of estimating that a current state of the system is the fault state. The method comprises a third step of predicting a future state of the system. Such a method forms an improved solution for predicting maintenance of the system comprising the hydrogen energy component.
Absstract of: AU2024221020A1
The invention comprises a method for connecting a pair of electrolyser stacks with electrolyte, electric current and gas drain piping. Accordingly, each pair of stacks of the electrolyser: - through interconnection endplates are supplied with alkaline electrolyte at elevated pressure by common electrolyte supply pipes and further, - through the interconnection endplate drain off oxygen gas containing electrolyte, and hydrogen gas containing electrolyte, to common gas separation vessels for oxygen and hydrogen respectively, - pull first electrically interconnected current injection electrodes adjacent to interconnection endplates to zero electrical potential through a zero potential conductor, and - supply second current injection electrodes placed adjacent to distal endplates with electric current at potentials equally higher and lower respectively than the zero potential at the first electrodes.
Absstract of: WO2025195703A1
The invention relates to a method for producing a synthetic fuel (F), comprising the steps (S1): carrying out a first reaction process, wherein the first reaction process creates a gas mixture of synthesis gas (SG) and carbon dioxide (CO2) with the addition of biomass (BM), oxygen (O2), wherein the synthesis gas (SG) contains carbon monoxide (CO) and hydrogen (H2); (S2): separating carbon dioxide (CO2) from the gas mixture and supplying hydrogen (H2) to separated carbon dioxide (CO2) for a second reaction process; (S3): carrying out a second reaction process, wherein in the second reaction process methanation is carried out using the reactants carbon dioxide (CO2) and hydrogen (H2), wherein methane (CH4) and water (H2O) are produced as an intermediate product; (S4): feeding back methane (CH4) and water (H2O) obtained from the second reaction process into the first reaction process, wherein a gas mixture containing synthesis gas (SG) is produced; and (S5): discharging synthesis gas (SG) and converting synthesis gas into a synthetic fuel (F). The invention further relates to a system (1) for producing a synthetic fuel (F), which is designed in particular to carry out the method.
Absstract of: WO2025195698A1
The invention relates to an apparatus (2) for producing hydrogen, from a feedstock stream (3) comprising ammonia, traces of water and oil contaminants, said apparatus (2) comprising: - a vaporizer (4) comprising a vaporization chamber (6) configured to receive the feedstock stream (3) and produce a vaporized purified ammonia stream (7), said vaporization chamber (6) comprising a blowdown outlet (8) configured to discharge a blowdown stream (10) comprising the traces of water and oil contaminants from said vaporization chamber (6); - an ammonia cracking reactor (12) for performing an endothermic reaction of said vaporized purified ammonia stream (7), thereby producing said hydrogen; and - a fired equipment (14); wherein said blowdown outlet (8) is connected to the fired equipment (14) for providing the blowdown stream (10) as an ammonia fuel stream to the fired equipment (14).
Absstract of: WO2025195683A1
The invention relates to a method and a device for synthesizing ammonia (8), wherein a gas mixture (make-up gas) (1), which comprises hydrogen and nitrogen and is supplied with a temporally fluctuating flow rate, is provided after being compressed in a first compressor (make-up gas compressor) (V1) in order to form an ammonia synthesis gas (3) that is compressed with the aid of a second compressor (recycle compressor) (V2) and is then reacted in an ammonia reactor (R) in order to form an ammonia-containing synthesis product (5), from which a recycled gas (2) comprising hydrogen and nitrogen is separated in order to be recirculated in order to form the ammonia synthesis gas (3). The flow rate of the recycled gas (2) is controlled via the recycle compressor (V2), which is integrated into a control circuit as an actuator and the conveying capacity of which can be set independently of the conveying capacity of the make-up gas compressor (V1). The invention is characterized in that the control circuit is designed with a higher-level control system which outputs a control signal that is based on the load of the ammonia reactor in order to change the conveying capacity of the recycle compressor (V2), said control signal being corrected by a PID control circuit in such a way that the pressure in the ammonia reactor (R) is always within a specified value range.
Absstract of: WO2025196454A1
Disclosed is a method of producing hydrogen from the reaction of liquid aluminium or a liquid aluminium alloy with water vapour. The method includes the steps of: (a) providing liquid aluminium or liquid aluminium alloy, wherein said liquid has a surface; (b) reacting said liquid with water vapour in order to generate alumina and hydrogen, wherein if the reaction is carried out at a temperature range of 650 to 900 °C and a pressure range of 0.1 to 1 MPa, at least 50% of the hydrogen dissolves in the liquid, and wherein said reaction takes place at the surface and/or in the liquid; (c) extracting hydrogen in the form of gas from the liquid.
Nº publicación: WO2025196219A1 25/09/2025
Applicant:
BASF SE [DE]
BASF SE
Absstract of: WO2025196219A1
A process for preparing acetylene and/or synthesis gas by partial oxidation of hydrocarbons with an oxidizing agent, wherein the oxidizing agent comprises O2 and H2, wherein the oxidizing agent is obtained at least in part by water splitting, preferably by electrolysis, the water splitting, preferably the electrolysis, preferably using energy generated at least in part from non-fossil resources, a cracking gas stream obtainable by the process according to the present invention, acetylene obtainable by the process according to the present invention, acetylene having a low total cradle to gate product carbon footprint, synthesis gas obtainable by the process according to the present invention, synthesis gas comprising hydrogen, CO, CO2 and CH4, wherein the separated synthesis gas stream has a δ18O value of < 22 ‰, referred to the international standard VSMOW ((Vienna- Standard- Mean-Ocean- Water)), the use of an oxidizing agent comprising O2 and H2 for the preparation of acetylene and synthesis gas, the use of the inventive acetylene or the acetylene obtained by the inventive process for the preparation of butynediol, butanediol, butenediol, polybutylene terephthalate (PBT), polybutylene adipate terephthalate (PBAT), tetrahydrofurane (THF), polytetrahydrofurane (polyTHF), polyester-based thermoplastic polyurethanes (TPUs), polyether-based TPUs, gamma-butyrolactone, pyrrolidine, vinylyrrolidone, polyvinylpyrrolidone, N-methylpyrrolidone, vinyl ether, polyvinyl ether, terpenes