Absstract of: CN121108502A
本发明属于新材料技术领域,公开了一种配位聚合物衍生催化剂及其制备方法与应用。该配位聚合物衍生催化剂的制备方法包括以下步骤:先将可溶性锌盐、可溶性钴盐和其他可溶性金属盐溶解于有机溶剂中,得混合溶液;将引发剂溶解于1‑乙烯基咪唑中,在惰性气体保护气氛下,进行热聚合,得聚合产物;然后将聚合产物加入混合溶液中混合,进行水热反应;经离心、干燥后,进行热处理,制得。本发明通过引入多金属元素,利用高温热处理过程的柯肯达尔效应,在无需引入模板剂的条件下即可得到大量的纳米孔,最终得到高比表面积的多级孔碳材料,使氧气顺畅传输至纳米孔内的活性位点处,降低氧传质阻力,提高氧还原反应催化性能。
Absstract of: CN121123320A
本发明公开了一种基于参数软测量的液流电池泵协同控制方法及系统,所述方法包括实时获取液流电池的测量数据;结合粘度软测量模型计算获取正负极电解液的实时粘度值,进而分别计算获取正负极目标流量;利用当前电极循环泵的进出口压力差获取循环泵的实际扬程,结合泵扬程‑流量特性方程求解得到当前电极实时流量并进行修正;将修正后的当前电极实时流量和目标流量输入PID控制器,输出当前电极循环泵速;取当前正极和负极循环泵的出口压力计算压力差,将压力差与预设目标压力差输入到PID控制器,输出得到泵速调节量并进行修正,输出正负极循环泵速。方法解决了传统技术方案需要直接测量流量和粘度造成的高成本、低可靠性的专用传感器问题。
Absstract of: FR3163081A1
L’invention se rapporte à une Cellule électrochimique (CEC) comprenant une première électrode (A0) de forme cylindrique et une deuxième électrode (C1) de forme cylindrique, la première électrode (A0) et la deuxième électrode (C1) partageant un même axe de révolution, le diamètre de la première électrode étant supérieur au diamètre de la deuxième électrode, de sorte que le volume (V) défini entre la face interne de la première électrode et la face externe de la deuxième électrode puisse recevoir un électrolyte, la cellule (CEC) comprenant des moyens d’obturation (D2, D3, CFo) de la base supérieure et de la base inférieure de la cellule assurant l’étanchéité de l’électrolyte, la cellule (CEC) comprenant de plus des moyens de production (M7, M8) d’un champ magnétique (B), ledit champ magnétique étant perpendiculaire au champ électrique produit entre la première électrode (A0) et la deuxième électrode (C1). Fig 1.
Absstract of: CN121123337A
本发明属于液流电池技术领域,公开了一种多孔聚苯并咪唑膜及其制备方法、液流电池,所述制备方法包括:S1.聚苯并咪唑和功能性化合物进行亲核取代反应,得到接枝有功能性侧链的聚苯并咪唑;S2.将含有接枝有功能性侧链的聚苯并咪唑的铸膜液涂布成湿膜;S3.湿膜通过预烘干进行初定型,而后进行热处理造孔,得到所述多孔聚苯并咪唑膜;由本发明提供的制备方法制备得到的多孔聚苯并咪唑膜具有优异的传导性、较高的选择性和良好的机械性能,能够充分满足液流电池用离子传导膜的要求。
Absstract of: CN121123340A
本发明公开了一种全钒液流电池电堆自动化装置及方法,涉及液流电池电堆装配技术领域。本发明包括第一机械臂、第二机械臂、转运吸盘组件、换位组件以及中央控制系统;两机械臂对称安装于换位组件的转盘上,实现工位切换;转运吸盘组件设于机械臂末端,采用多个独立控制的柔性吸盘,配备压力传感器与电磁阀;电堆装配工位集成压力监测模块,实现堆叠力闭环控制;中央控制系统通过工业以太网协调各部件运行,完成电池单体的自动取料、转运、交接与精密堆叠。本发明通过双臂协同与旋转换位机制,避免了路径干涉,提升了作业效率与空间利用率;结合力控堆叠与实时状态监控,显著提高了电堆装配精度,实现了全钒液流电池电堆的高效、智能、自动化生产。
Absstract of: CN121123313A
本发明属于液流电池技术领域,公开了一种柔性石墨双极板及其制备方法和液流电池。本发明的柔性石墨双极板包括柔性石墨双极板基体和导电性树脂,导电性树脂填充于柔性石墨双极板基体的孔隙中,导电性树脂通过包括以下步骤的制备方法制备而成:S1、将3,4‑乙烯二氧噻吩和树脂加入水中,搅拌,得到3,4‑乙烯二氧噻吩‑树脂混合溶液;S2、将氧化剂加入3,4‑乙烯二氧噻吩‑树脂混合溶液中,搅拌,反应后得到反应产物;S3、将反应产物进行过滤,清洗,干燥后得到导电性树脂。本发明的柔性石墨双极板具有良好的面内电导率和接触电阻,有利于提升液流电池的能量转化效率。
Absstract of: CN121123333A
本发明涉及氢燃料电池技术领域,公开了一种基于传感器的氢燃料电池倾倒防护预警处理方法及系统,采用卡尔曼滤波算法对采集数据进行去噪处理,再经归一化处理得到预处理数据;基于MOF材料状态动态分配倾斜角、加速度、材料状态、管路压力的权重,根据预处理数据通过加权融合算法计算实时综合风险特征值;将过去5秒的预处理数据输入Transformer‑TCN混合预测模型,得到未来1‑2秒的倾斜角、加速度及预测综合风险特征值;采用模糊控制算法,基于MOF材料状态动态调整安全阈值,划分5级危险等级;根据危险等级触发对应安全动作,动态调整安全动作参数;本发明实现设备姿态与反应状态的协同监测、风险提前预警及分级动态防护。
Absstract of: CN121123332A
本申请涉及一种液流电池系统及其在线流量标定方法。其系统部分主要包括控制器、电解液储罐、流量标定罐以及电堆,流量标定罐上设置有液位传感器,靠近电堆入口一侧的主循环管路上沿液流方向依次设置有第一循环泵、压力传感器以及流量计,靠近电堆出口一侧的主循环管路上设置有第一电动控制阀;电堆与流量标定罐通过第一支路相连,第一支路上设置有第二电动控制阀;流量标定罐与电解液储罐通过第二支路相连,第二支路上沿液流方向依次设置有第二循环泵以及第三电动控制阀;控制器用于进行实际流量的实时计算,并对流量计的实时输出值进行在线自动补偿。本申请可以保证电解液流量测量的长期稳定与准确。
Absstract of: CN121106806A
本发明涉及无人机配件技术领域,且公开了一种长航时氢燃料电池无人机,包括氢燃料无人机机身,所述氢燃料无人机机身底部固定连接有连接板,所述连接板内壁固定连接有反应仓,所述氢燃料无人机机身外壁设置有对流机构,还包括:预热机构,所述预热机构设置在连接板内壁,所述预热机构包括隔离仓,所述隔离仓内壁固定连接有导热块,所述导热块外壁开设有散热孔,所述导热块内壁开设有导热孔,所述导热块内壁固定连接有加热块。本发明通过预热机构中隔离仓与储气仓抽为真空环境,与外界环境隔离,避免无人机在高空环境中飞行时,受到温度影响导致氢燃料反应速度降低,保证无人机高空环境下稳定的进行反应输出与性能稳定性。
Absstract of: CN121123316A
本发明涉及燃料电池技术领域,尤其涉及一种风冷氢燃料电池能源回收利用装置及其控制方法,包括氢燃料电池堆、储氢瓶和风扇,风扇与氢燃料电池堆的空气流道连通,储氢瓶与氢燃料电池堆的氢气流道通过供氢管路连通,储氢瓶的外侧设有将其环绕包围的热回收通道,热回收通道的一端通过进风通道与风扇连通,且其另一端通过出风通道连接有加湿器,加湿器设置于氢燃料电池堆远离风扇的一侧,将氢燃料电池堆运行时产生的废热回收,通过热回收通道为储氢瓶提供热量,提高了能量利用率,而且维持储氢瓶的放氢速度,提升电堆效率,将储氢瓶放氢吸热过程中的冷凝水用于在氢燃料电池堆的空气入口增湿,有效保证了风冷氢燃料电池的水平衡,防止出现膜干涸现象。
Absstract of: CN121118731A
本发明属于燃料电池技术领域,公开了一种高性能燃料电池流场设计方法、双极板及其燃料电池。该方法特征在于根据电堆产品整体需求,递进式定义了双极板整体轮廓,流道,分配区和腔口等结构的尺寸参数,并阐述了相关设计准则和原理,以及设计过程中的前后关联,兼顾单电池性能与长堆的电压一致性,介质阻力压降,功率密度等功能,可以实现燃料电池电堆的正向设计。本发明实施例中提出了双极板分配区的不同设计形式,对于阴极侧和阳极侧,可以有效降低接触电阻以及运行过程中的因压差变化造成的膜电极形变程度,对于冷却腔可以实现在降低阻力的同时提升热交换能力,有利于进一步提升高性能燃料电池的寿命和可靠性。
Absstract of: CN121108930A
本发明涉及燃料电池技术领域,公开一种高温燃料电池粘结剂、制备方法与应用。所述高温燃料电池粘结剂的制备方法,包括如下步骤:常温下,将聚醚型苯并咪唑溶解于有机溶剂中形成纺丝液;将所述纺丝液经过静电纺丝得到纤维原丝,将所述纤维原丝切割为纤维短丝;将所述纤维短丝分散于分散液中,得到所述高温燃料电池粘结剂。本发明制备的一种聚醚型苯并咪唑的纤维短丝,一方面,由于聚醚型苯并咪唑与高温膜成分相同,能改善膜与催化层的相容性;另一方面,短纤维可以吸收催化层中的磷酸,减少磷酸占据活性位点和堵塞孔隙,从而提高催化剂的利用效率和气体传输通道的构建。
Absstract of: CN121111462A
本发明涉及一种化学回热氨内燃机燃料电池混合动力系统及控制方法,属于混合动力系统技术领域,以解决传统动力系统燃料利用率低、能量效率不高,以及氨裂解与内燃机冷却系统分离导致的系统体积大、能量浪费等问题。本发明利用氨燃料充当内燃机缸套的冷却介质同时燃料发生裂解反应生成氢气和氮气等裂解气,裂解气再通过膨胀涡轮做功降压后进入燃料电池内与空气发生电化学反应发出电能,燃料电池尾气有未反应完的燃料成分再通入内燃机内燃烧做功带动发电机发电。本发明实现了化学回热以及裂解器与内燃机冷却缸套的一体化。裂解气膨胀做功和燃料电池尾气再通入内燃机内燃烧,实现了能量的梯级利用,进而实现了动力系统的高燃料利用率和高能量效率。
Absstract of: CN121123322A
本发明公开了一种基于模糊ADRC的高温燃料电池HT‑PEMFC温控方法及系统,方法包括构建包括电堆、氢气供应管线、空气供应管线、热油回路、数据采集装置、直流电子负载和主机的HT‑PEMFC系统;根据HT‑PEMFC系统中各装置的运行数据通过基于多物理场Modelica语言平台Dymola建立HT‑PEMFC系统的温度动态模型;设计模糊带宽调整策略Fuzzy‑ADRC;将模糊带宽调整策略Fuzzy‑ADRC用于在负载电流扰动、循环泵流量扰动下电堆温度的稳定控制。本发明解决了传统ADRC在强扰动下的“过补偿能耗问题”和PID的“高调节能耗问题”,是HT‑PEMFC系统热管理的最优控制器选择之一。
Absstract of: CN121123321A
本发明具体公开了一种基于粒子群算法的全钒液流电池多目标运行优化控制方法,涉及全钒液流电池储能系统控制技术领域。该方法首先采集VRB系统实时运行数据并预处理;然后在充放电模式下构建包含充电时间、输入/输出能量和泵能耗的多目标优化函数;接着以充放电电流密度和电解液流量为决策变量、以温度、电压、SOC值为约束条件,通过粒子群算法优化求解得到最优参数;最后结合数据采集、函数计算、参数调节与仿真反馈实现全流程自动闭环控制。该方法通过多目标动态优化、决策变量与约束条件及闭环自适应控制,实现了全钒液流电池充电时间缩短、系统效率提升、泵能耗降低的协同优化,增强了系统运行安全性、稳定性与复杂场景适应性。
Absstract of: WO2025253063A1
The present invention relates to a system (1) for treating gases laden with carbon dioxide emitted by a consumer, comprising a tank (10) for storing liquefied natural gas, a consumer configured to be supplied with a fuel produced from liquefied natural gas stored in the storage tank (10), a device (18) for compressing the gases laden with carbon dioxide, a device (22) for drying these gases laden with carbon dioxide, a device (28) for condensing the carbon dioxide present in the gases laden with carbon dioxide, and a device (30, 32) for separating the carbon dioxide present in the gases emitted by the consumer, the condensation device (28) being arranged between the drying device (22) and the separation device (30, 32).
Absstract of: US2025379246A1
Methods for removing contaminants from a polymer electrolyte membrane (PEM) fuel cell or fuel cell stack are provided. The methods are conducted without the need for disassembly of the cell or stack, and can be performed as throughout the lifetime of the cell or stack for prevention of performance loss. The methods include introducing an acidic solution to a first electrode side of a membrane electrode assembly and hydrogen gas to a second electrode side of the membrane electrode assembly and applying a hydrogen pumping current across. Thereafter, the acidic solution is removed by supplying reactant gases to the electrodes at relative humidity above saturation.
Absstract of: US2025379241A1
A fuel cell cooling system for a refrigerated vehicle has a first heat exchanger, a second heat exchanger, a coolant pump assembly, a solenoid valve module, and a control unit. The first heat exchanger and the second heat exchanger respectively exchange heat with air outside the refrigerated vehicle and air inside a refrigerated container. The coolant pump assembly allows a coolant to flow circularly. The solenoid valve module is electrically connected to the control unit. A fuel cell temperature control method is carried out by the control unit and has the following steps: receiving a power output adjusting data of the fuel cell system, computing an estimated temperature of the coolant according to the power output adjusting data, and determining whether the estimated temperature is within the temperature target range to control the solenoid valve module for controlling the operating temperature of the fuel cell system.
Absstract of: US2025379238A1
Disclosed are catalysts having high activity, stability, and durability, methods for making, and fuel cells comprising the catalysts. The catalysts include nitrided ternary platinum (Pt) containing nanoparticles comprising platinum (Pt), nickel (Ni), and cobalt (Co) having an intermetallic L10 structure (IM-PtNiCON) loaded on a mesoporous carbon support comprising a predetermined hierarchical pore distribution architecture (MPC-HPDA). The nitrided ternary platinum (Pt) containing nanoparticles have an average particle diameter between about 3.0 nm and about 8.0 nm. The predetermined hierarchical pore distribution architecture of the mesoporous carbon support comprises a plurality of pores with a majority percentage of the plurality of pores having an average pore diameter between about 3.0 nm to about 8.0 nm, and at least a portion of the nitrided ternary platinum (Pt) containing nanoparticles is disposed within the majority percentage of the plurality of pores having an average diameter between about 3.0 nm to about 8.0 nm.
Absstract of: US2025379240A1
The invention relates to a method for manufacturing several types of fuel cells, having different power outputs according to the types of cells, the cells having a stack of plates each comprising first channels for the circulation of reactive gases, dihydrogen and air respectively, and second channels for the circulation of a heat-transfer fluid, a proton-exchange membrane being inserted between two adjacent plates, according to which method: plates of a single format are obtained;at least two types of membrane are obtained, having at least two membrane formats each having different dimensions;the plates are assembled with a first one of said membrane formats, so as to produce a first type of fuel cell, having a first power output;the plates are assembled with a second one of said membrane formats, so as to produce a second type of fuel cell, having a second power output,so as to have several types of cells, having different power outputs, from identical plates and membranes specific to each type of cell, each cell of a given type of cell using membranes of the same formats, intended for said type of cell.
Absstract of: US2025379245A1
A method, computer program product, and computer system for determining, by a computing device, a fuel cell inlet temperature error. A total temperature range that a valve associated with the fuel cell is able to control may be determined. An amount to adjust the valve to change a current temperature of the fuel cell within the total temperature range may be identified based upon, at least in part, the fuel cell inlet temperature error and the total temperate range that the valve associated with the fuel cell is able to control. The valve may be adjusted by the amount to change the current temperature of the fuel cell within the total temperature range.
Absstract of: WO2025253340A1
A fuel cell power module (1) for a fuel cell vehicle comprises a fuel cell stack arrangement (11) including a fuel cell stack (111), a hydrogen supply system (113), an oxidant supply system (114), and a cooling system (115). A hydrogen refuelling arrangement (12) includes a refuelling connector (121). A hydrogen storage arrangement (15) operates at a pressure below 100 bar and comprises metal hydride containers (151) with metal hydride material (1511), a hydrogen input/output pipeline (1512), and a heating and cooling arrangement (1513). A buffer hydrogen pressure cylinder (152) is connected via a check valve and a remotely operable isolating valve (1534). A cooling supply system (165) is provided for the metal hydride containers. A heat management system (16) comprises a first heat exchanger (161), a second heat exchanger (162), and a flow switching arrangement (164) to selectively thermally couple the metal hydride containers to either the fuel cell cooling system or the cooling supply system.
Absstract of: WO2025252605A1
A plate-shaped structure, for example a bipolar plate, for a fuel cell has: a flow field; inlet openings and outlet openings for an anode gas and/or a cathode gas and/or a coolant; and a plurality of recesses in at least one first main surface of the plate-shaped structure, said recesses being designed - to counteract a slipping of the plate-shaped structure relative to another plate-shaped structure when the plate-shaped structure and the other plate-shaped structure are stacked on top of one another and/or - to receive a filling material in order to counteract a slipping of the plate-shaped structure relative to another plate-shaped structure and/or in order to keep the plate-shaped structure and the other plate-shaped structure spaced apart when the plate-shaped structure and the other plate-shaped structure are stacked on top of one another.
Absstract of: WO2025252959A1
The invention relates to a silencer having a cavity (10) at least partially delimited by a housing (13), a silencing device (20), arranged within the cavity (10), for reducing noise of the exhaust gas flow (S), and a water separation device (30), arranged within the cavity (10) upstream of the silencing device (20), for separating water from the exhaust gas flow (S). A flow guiding device (23) that is arranged in a silencing chamber (21) has an expansion element (231) for radially expanding at least part of the exhaust gas flow (S) flowing through the inlet opening (211) and forms a return flow channel (230), within which a flow path for the exhaust gas flow (S) is provided, the flow direction (SR) of which runs counter to the main flow direction (R).
Nº publicación: WO2025252554A1 11/12/2025
Applicant:
EKPO FUEL CELL TECH GMBH [DE]
EKPO FUEL CELL TECHNOLOGIES GMBH
Absstract of: WO2025252554A1
In order to provide an electrochemical device comprising multiple electrochemical units which follow one another along a stacking direction and each comprise at least one perforated plate, a bipolar plate and a membrane arrangement, which electrochemical device easily allows for precise positioning of the membrane arrangement of one electrochemical unit relative to a further, at least partially metallic element of the same electrochemical unit and/or relative to an at least partially metallic element of another electrochemical unit during the assembly of the electrochemical device, according to the invention, each electrochemical unit comprises a positioning means for positioning the membrane arrangement in at least one transverse direction, orientated perpendicular to the stacking direction, relative to a further, at least partially metallic element of the same electrochemical unit and/or relative to an at least partially metallic element of another electrochemical unit.