Resumen de: US2025210627A1
A composite electrode, a manufacturing method thereof, and a lithium-ion battery are provided. The composite electrode includes a current collector; and a composite material layer disposed on at least one side surface of the current collector. The composite material layer comprises n-layer active substance layers and n-1-layer lithium supplement layers that are stacked at intervals, in which n is greater than or equal to 3 and n is an integer. A side of the composite material layer which is adjacent to the current collector is one of the n-layer active substance layers. Porosity of the n-1-layer lithium supplement layers gradually increases along a direction away from the current collector.
Resumen de: US2025210620A1
Prelithiated negative electrodes are prepared under controlled conditions. Lithium foils are laminated onto active material layers using sufficient pressure such that heat is generated upon initiation of reaction of between lithium and the active material. The reaction proceeds to completion with the laminated assembly maintained under solvent-free, temperature controlled conditions for up to about 24 hours. The prelithiated negative electrode active material has a voltage against lithium metal of not more than about 1V at a value of lithium uptake of 10% of capacity, and irreversible capacity loss associated with the active material has been eliminated. Roll-to-roll processes and apparatus are described for safe manufacture of hundreds of meters of the prelithiated negative electrodes which can be taken up in roll form to be cut and assembled with other components to form lithium ion cells.
Resumen de: US2025210617A1
A method for manufacturing a battery cell comprising manufacturing C cathode electrodes by coating first and second cathode active material layers on opposite sides of C cathode current collectors, and applying first and second seal coatings on the C cathode current collectors to surround the first and second cathode active material layers, respectively. The method includes manufacturing A anode electrodes by coating first and second anode active material layers on opposite sides of A anode current collectors; and applying first and second seal coatings on the A anode current collectors to surround the first and second anode active material layers, respectively. The method includes arranging S separators between the C cathode electrodes and the A anode electrodes to form a battery cell stack, where C, A and S are integers greater than one.
Resumen de: US2025210649A1
A novel positive electrode active material is to be provided. In addition, a battery with favorable charge and discharge characteristics is to be provided. The battery includes a positive electrode, and the positive electrode includes a positive electrode active material including lithium cobalt oxide. The lithium cobalt oxide contains magnesium, aluminum, and nickel, and when the concentration of cobalt in the lithium cobalt oxide measured from XPS analysis is represented as 1, the magnesium concentration (Mg/Co) is higher than or equal to 0.50 and lower than or equal to 0.90; and the half width of a Mg1s peak is higher than or equal to 1.0 eV and lower than or equal to 2.6 eV.
Resumen de: US2025210663A1
A binder for an all-solid-state battery includes a first polymer in which a chain comprising a first hydrogen-bonding functional group is grafted with a side chain on the main chain of a conjugated diene-based polymer and a second polymer in which a chain comprising a second hydrogen-bonding functional group is grafted with a side chain on the main chain of a conjugated diene-based polymer, wherein the first hydrogen-bonding functional group of the first polymer and the second hydrogen-bonding functional group of the second polymer form hydrogen bonds with each other. A positive electrode for an all-solid-state battery including the binder for an all-solid-state battery, a conductive material, a positive electrode active material and a solid electrolyte, and an all-solid-state battery including the positive electrode are also described.
Resumen de: US2025210738A1
A battery pack detection system configured to be arranged surrounding a battery pack formed by a plurality of batteries arranged in an M×N array includes first sensing modules, second sensing modules and a computing module. Each first sensing module includes M first sensing parts each configured to sense a sum of first expansions of the N batteries in the corresponding column. Each second sensing module includes N second sensing parts each configured to sense a sum of second expansions of the M batteries in the corresponding row. Each of M and N is an integer greater than or equal to 2. The computing module connects with the first sensing modules and the second sensing modules so as to determine whether each battery is a defective battery based on the first expansion sum, the second expansion sum, corresponding first addresses and corresponding second addresses.
Resumen de: US2025210708A1
A lithium battery including a cathode, an anode current collector, and an electrolyte layer disposed between the cathode and the anode current collector is provided. The electrolyte layer includes a gel polymer electrolyte, wherein the gel polymer electrolyte includes a first polymer, a first lithium salt, a second lithium salt, a first organic solvent, and a second organic solvent, the first polymer includes a repeating unit derived from a first crosslinking monomer including three or more reactive functional groups, and the first lithium salt and the second lithium salt each independently include a borate-based lithium salt.
Resumen de: US2025210706A1
A polymer electrolyte for a battery cell comprising i) a first polymaleimide polymer comprising first polymaleimide repeat units, wherein the first polymaleimide repeat units are according to R3(Q)μ, wherein R3, individually, is a polyether or C(H)h(CxH2x+1)i((CH2)ψ)j(CH2OC(O)(CH2)σ)k, wherein i is between 0 and 2; j and k, individually, are between 0 and 4; h is 4-i-j-k; h+i is between 0 and 2; x is between 1 and 6; L) is between 1 and 10; σ is between 1 and 20; μ, individually, is at least 2; and Q, individually, is according to a particular formula.
Resumen de: US2025210655A1
Described herein are electrode active materials useful as the positive electrode in lithium or lithium-ion batteries. The disclosed electrode active materials comprise lithium phosphates uniquely suited for mixing with lithium layered oxides, as well as the resulting mixture. For example, compositions of matter are described herein. The disclosed materials exhibit high energy density with reduced cobalt and nickel content.
Resumen de: US2025210647A1
Disclosed herein a process for preparing a cathode active material of Formula (I) LiNixCoyMnzO2, including steps of: i) preparing a precursor of hydroxides or carbonates of Ni, Co and Mn; ii) mixing the precursor obtained from step i) with a source of Li; and iii) calcining the mixture obtained from step ii), where step iii) includes multi-step calcination, where x is in a range of from 0.80 to 0.95 and preferably from 0.80 to 0.92, y is in a range of from 0.01 to 0.15 and preferably from 0.01 to 0.12, and z is in a range of from 0.01 to 0.15 and preferably from 0.01 to 0.12, and the sum of x, y and z is 1.
Resumen de: US2025210642A1
Disclosed herein is a process for making an electrode active material for lithium-ion batteries. The process includes the steps of(a) providing a cathode active material (α) that has the general formula Li1+x1TM1−x1O2,(b) providing another cathode active material (β) that has the general formula Li1+x2TM1−x2O2, and(c) combining cathode active material (α) and cathode active material (β) in a mass ratio in the range of from 1:5 to 5:1.
Resumen de: US2025210643A1
A positive electrode active material for nonaqueous electrolyte secondary batteries according to the present invention is a composite oxide which is represented by general formula LixTMtmMyO2-fFf and has a crystal structure that belongs to the space group Fm-3m; and in the general formula, TM represents a transition metal, M represents a non-transition metal, and if Q=2×tm×(1−(1−f/2)5), Q<1 is satisfied. With respect to a dV/dq-SOC curve showing the relationship between the state of charge SOC and dV/dq of a half cell that contains this composite oxide, the dV/dq-SOC curve being obtained by charging the half cell with a charging current of 0.1 C at 25° C. to an end voltage within the range of 4.7 V to 4.95 V, there is one or more peaks within the SOC range from 10% to 40%.
Resumen de: US2025210645A1
Disclosed is a positive electrode active material for a lithium primary battery, including: active material particles represented by a composition formula LixMnO2 where 0≤x≤0.05; and a zinc-containing oxide partially covering surfaces of the active material particles. The coverage of the active material particles by the zinc-containing oxide is in the range from 0.10% to 65%.
Resumen de: US2025210640A1
A method of producing a positive electrode active material, the method includes: contacting first particles that contain a lithium transition metal composite oxide with a solution containing sodium ions to obtain second particles containing the lithium transition metal composite oxide and sodium element, wherein the lithium transition metal composite oxide has a layered structure and a composition ratio of a number of moles of nickel to a total number of moles of metals other than lithium in a range of from 0.7 to less than 1; mixing the second particles and a boron compound to obtain a mixture; and heat-treating the mixture at a temperature in a range of from 100° C. to 450° C.
Resumen de: US2025210998A1
A method of selecting and charging battery modules connected in a battery string based on a first method and subsequently based on a second method. The first method includes the following steps: establish a state of charge of the battery modules and control connectivity of the battery modules to the battery string according to the established state of charge, to balance the state of charge among the battery modules. The second method includes the following steps: associate the battery modules with a unique battery module identification, establish a battery module current, establish battery cell voltage of battery cells comprised by the battery modules, control connectivity of the battery modules to the battery string according to the battery module identifications, and charge the battery module connected to the battery string for a determined period of time.
Resumen de: US2025210699A1
A sulfide electrolyte having a P chemical building block, a solid-state battery containing the sulfide electrolyte having a P chemical building block, and a method of making the same. The sulfide electrolyte having a P chemical building block contains at least lithium (Li), sulfur(S), phosphorus (P), and a halogen, and has a structure characterized by an 86.6 ppm 31P shift in a 31P NMR spectra. In some preferred embodiments, the sulfide electrolyte having a P chemical building block may include chlorine, present in a unique PS43−—Cl− chemical building block.
Resumen de: US2025210752A1
A battery module having a preformed insert. The battery module may include a plurality of battery cells configured for storing and supplying electrical power and a cell holder configured for supporting the battery cells. The preformed insert may be disposed relative to the cell holder and the battery cells and formed to include a potting material shaped to define a plurality of coolant channels around the battery cells.
Resumen de: US2025210784A1
The present disclosure relates to the field of electronic devices, and in particular, to an electronic device, a battery compartment, and a cover thereof. The hatch cover comprises a cover body, a first locking unit, a second locking unit and a rotary driving unit; the periphery of the cover body is provided with a first sealing ring; the first locking unit comprises a pair of sliding buckles which are connected to the inner side surface of the cover body in a sliding manner and can move towards each other or away from each other.
Resumen de: US2025210728A1
Embodiments described herein relate to electrochemical cells with dendrite prevention mechanisms. In some aspects, an electrochemical cell can include an anode disposed on an anode current collector, a cathode disposed on a cathode current collector, the cathode having a first thickness at a proximal end of the cathode and a second thickness at a distal end of the cathode, the second thickness greater than the first thickness, a first separator disposed on the anode, a second separator disposed on the cathode, an interlayer disposed between the first separator and the second separator, the interlayer including electroactive material and having a proximal end and a distal end, and a power source electrically connected to the proximal end of the cathode and the proximal end of the interlayer, the power source configured to maintain a voltage difference between the cathode and the interlayer below a threshold value.
Resumen de: US2025210782A1
A battery module for a battery pack has a first and a second longitudinal frame member extending in the longitudinal direction. At least three crossbeam frame members extend in the width direction. At least two separate cell stacks, each has a set of cylindrical battery cells and a holder in which the set of cylindrical battery cells are received.
Resumen de: US2025206147A1
An operating point for a vehicle electric motor is selected to produce requested torque inefficiently, to generate additional heat to warm the battery. A torque command for operation of the vehicle at a desired speed and a heat power command for an amount of heat needed to warm a battery powering the vehicle electric motor are received by a motor controller. The motor controller determines an operating point of the vehicle electric motor that corresponds to both the requested torque and the amount of heat, and the vehicle electric motor is controlled based on the determined operating point.
Resumen de: DE102024136623A1
Die vorliegende Offenbarung stellt ein Elektrodenaktivmaterial bereit, das harten Kohlenstoff enthält und in der Lage ist, die Kapazität bei niedrigem Potential zu verbessern, sowie ein Herstellungsverfahren dafür, eine Elektrodenmischung, die ein solches Elektrodenaktivmaterial enthält, und eine Batterie, die eine solche Elektrodenmischung enthält. Der harte Kohlenstoff, der in dem Elektrodenaktivmaterial der vorliegenden Offenbarung enthalten ist, hat ein G'-Band, ein G-Band und ein D-Band in einem Raman-Spektrum. Das Verhältnis IG/I'Gvon Intensität IG'des G'-Bandes zu Intensität IGdes G-Bandes beträgt 0,05 oder mehr. Die Halbwertsbreite HwDdes D-Bandes beträgt 50 oder mehr und 160 oder weniger. Das Verfahren zur Herstellung des Elektrodenaktivmaterials der vorliegenden Offenbarung umfasst die folgenden Schritte: Bereitstellen eines Rohmaterials, das Kohlenstoff umfasst, und Brennen, um das Rohmaterial unter einer inerten Atmosphäre, die mehr als 0 % und weniger als 1,0 % Luft umfasst, zu karbonisieren.
Resumen de: DE102024137105A1
Ein neuartiges Positivelektrodenaktivmaterial wird bereitgestellt. Außerdem wird eine Batterie mit vorteilhaften Lade- und Entladeeigenschaften bereitgestellt. Die Batterie umfasst eine Positivelektrode, und die Positivelektrode umfasst ein Positivelektrodenaktivmaterial, das Lithium-Kobalt-Oxid umfasst. Das Lithium-Kobalt-Oxid enthält Magnesium, Aluminium und Nickel, und wenn die Konzentration von Kobalt in dem Lithium-Kobalt-Oxid, die durch die XPS-Analyse gemessen wird, als 1 dargestellt wird, ist die Magnesiumkonzentration (Mg/Co) höher als oder gleich 0,50 und niedriger als oder gleich 0,90; und die Halbwertsbreite eines Mg1s-Peaks ist höher als oder gleich 1,0 eV und niedriger als oder gleich 2,6 eV.
Resumen de: DE102024103343A1
Eine elektrische Verbindung für ein Fahrzeug und Verfahren zur Herstellung einer elektrischen Verbindung für Fahrzeuge. Die elektrische Verbindung umfasst eine erste elektrische Komponente mit einem ersten Verbindungsbereich. Die elektrische Verbindung umfasst auch einen Leiter mit einem zweiten Verbindungsbereich. Der Leiter wird im zweiten Verbindungsbereich mit dem ersten Verbindungsbereich der ersten elektrischen Komponente verbunden. Darüber hinaus umfasst die elektrische Verbindung eine Fügezone, die in der ersten elektrischen Komponente im ersten Verbindungsbereich ausgebildet ist. Der Leiter umfasst einen Kupfer-Graphen-Mehrschichtverbund, der auf der Oberfläche des Leiters ausgebildet ist, wobei der Verbund mindestens eine der folgenden Verbundstrukturen umfasst: a) abwechselnde Schichten aus Graphen und Kupfer, die auf dem Substrat abgeschieden sind, b) Graphenpartikel, die in einer Kupfermatrix dispergiert sind, und c) abwechselnde Schichten aus Graphen und Kupfer, die auf einer Kupferfolie abgeschieden sind, wobei die Kupferfolie um das Substrat gewickelt ist.
Nº publicación: DE102024134616A1 26/06/2025
Solicitante:
TOYOTA MOTOR CO LTD [JP]
TOYOTA JIDOSHA KABUSHIKI KAISHA
Resumen de: DE102024134616A1
Eine Ladesteuerungsvorrichtung (100) ist eingerichtet, um das Laden einer Lithium-Ionen-Batterie (41) zu steuern, einen Zuflussstrom abzuschätzen, der in die Lithium-Ionen-Batterie (41) fließt, wenn ein durch eine Last fließender Strom anhält, einen Schutzladestrom herzuleiten, der ein Maximalwert des Ladestroms ist, der nicht dazu führt, dass die Lithium-Ionen-Batterie (41) eine Lithiumablagerung bildet, Berechnen eines oberen Grenzladestroms auf der Grundlage des Schutzladestroms und des Zuflussstroms, wobei der obere Grenzladestrom eine obere Grenze des Stroms zum Laden der Lithium-Ionen-Batterie (41) ist, und Steuern des Ladens der Lithium-Ionen-Batterie (41) auf der Grundlage einer elektrischen Leistung, die aus dem oberen Grenzladestrom und einer Spannung der Lithium-Ionen-Batterie (41) berechnet wird.