Resumen de: US2025183344A1
The present exemplary embodiments provide a manifold for a solid oxide fuel cell including: a first tube which is positioned on a side surface of the manifold and protrudes to the outside; a second tube which is positioned on a side surface of the manifold different from the surface on which the first tube is positioned and protrudes to the outside of the manifold; a fluid flow space connected to the first tube; and a plurality of branch tubes connected to the second tube, wherein the plurality of branch tubes is disposed inside the fluid flow space.
Resumen de: US2025179940A1
An energy storage system (TES) converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. The delivered heat which may be used for processes including power generation and cogeneration. In one application, the TES provides higher-temperature heat through non-combustible fluid to an alumina calcination system used to remove impurities or volatile substances and/or to incur thermal decomposition to a desired product.
Resumen de: US2025183335A1
A fuel cell system includes a fuel cell stack, a humidifier configured to humidify air to be supplied to the fuel cell stack, and an air control valve. The air control valve has one end connected to the fuel cell stack and the other end connected directly to the humidifier. The air control valve is configured to control air that enters or exits the fuel cell stack, thereby obtaining advantageous effects of simplifying a structure and improving spatial utilization and a degree of design freedom.
Resumen de: US2025183338A1
An in situ monitoring system of compression load on a stack includes a stack assembly, a tie rod assembly, and a compression load measurement device. The stack assembly includes the stack, a first endplate, and a second endplate that cooperate to apply a compression load to the stack. The tie rod assembly includes a tie rod that extends between the first endplate and the second endplate. The compression load measurement device is coupled to the tie rod or the first and second endplates and configured to determine the compression load applied to the stack during operation of the stack.
Resumen de: US2025183337A1
A system includes a high speed camera configured to capture sequential images of a cathode side backing layer of a test fuel cell during operation thereof, a processor, and a memory. The memory is communicably coupled to the processor and stores machine-readable instructions that, when executed by the processor, cause the processor to perform image pre-processing on the sequential images, detect water pixel anomalies in the pre-processed sequential images and provide pre-processed and anomaly detected sequential images, and train a machine learning model to predict pressure values in the test fuel cell using the pre-processed and anomaly detected sequential images.
Resumen de: US2025183334A1
A simple, fast method for manufacturing a fuel cell separator with integrated elastomer seal has been developed using a UV-curable elastomer composition for the seal. A mold for the seal comprising a flexible sheet made of PTFE or polystyrene is employed. The mold is compressed against a separator plate between a support and a UV-transparent clamping block. Elastomer is then appropriately injected and cured using UV light. Thereafter, the flexible sheet is peeled off, rather than removed all at once, thereby avoiding delamination of the fragile seal from the separator plate.
Resumen de: US2025183330A1
A single cell for a fuel cell includes a membrane electrode assembly, two gas diffusion layers that sandwich the membrane electrode assembly, and two separators that sandwich the membrane electrode assembly and the two gas diffusion layers. The gas diffusion layer has a Young's modulus of greater than or equal to 1800 MPa and a thickness ranging from 0.12 mm to 0.25 mm, inclusive. Each separator includes a groove with a branching part. The groove forms a passage that supplies the reactant gas to the membrane electrode assembly. A value obtained by dividing a diameter of an inscribed circle of the branching part in the groove by a width of a general part in the groove is less than or equal to 2.5.
Resumen de: US2025183329A1
An enhanced fuel cell separator design prevents gasket burrs during gasket line formation and facilitates straight-line movement of reaction gas and water, thereby improving overall gas flow. The fuel cell unit incorporates the fuel cell separator featuring a reaction surface, a cooling surface, a central reaction region, and surrounding manifolds.
Resumen de: US2025183333A1
A fuel cell stack includes single cells stacked in a thickness direction. Each of the single cells includes a membrane electrode gas diffusion layer assembly and multiple plate-shaped separators sandwiching the membrane electrode gas diffusion layer assembly from opposite sides in the thickness direction. Each separator has a hole. The adjacent separators of any two single cells stacked in the thickness direction include a weld portion. Specifically, the separators are welded to each other around the entirety of the hole, so as to form the weld portion. The hole of each separator has a shape elongated in a specified direction. Each weld portion includes a distant section located in a long part and multiple close sections in the long part. The close sections are closer to the hole than the distant section is to the hole.
Resumen de: US2025183327A1
A metal-supported catalyst has both excellent durability and an excellent catalytic function, an electrode, and a battery. The metal-supported catalyst is a metal-supported catalyst, including: a carbon carrier; and catalyst metal particles supported on the carbon carrier, the particles each containing a noble metal, wherein the metal-supported catalyst has a half width at half maximum of a D band having a peak top in a vicinity of a Raman shift of 1,340 cm−1 of 50.0 cm−1 or less in a Raman spectrum obtained by Raman spectroscopy, and wherein the metal-supported catalyst has a carbon anchoring proportion of 15.0% or more.
Resumen de: US2025183328A1
A method for comminuting spent, catalyst-coated PEM membranes from PEM fuel cells and/or PEM electrolysis cells by means of a cutting mill.
Resumen de: US2025183336A1
The present invention provides a method for monitoring a battery power plant comprising a plurality of battery modules which are designed as a redox flow battery, and wherein the method comprises the following steps:S1: generating a time-varying excitation current I with a base frequency f, by means of which at least one battery module is excited to perform an impedance spectroscopy;S2: time-resolved detecting the excitation current I and a response voltage V;S3: calculating the impedance Z(ω), wherein ω=2πf;and wherein the method comprises the following step:S4: initiating maintenance work on the at least one battery module if Re{Z(ω)} exceeds a predefined limit value,and wherein in step S1 the excitation current I is generated by use of a converter, wherein the base frequency of the generated time-varying excitation current is f≤20 Hz.
Resumen de: US2025183332A1
The present disclosure relates to systems and methods of improving fuel cell stack performance by preventing corrosion and heat loss. The present disclosure describes embodiments of end plates positioned in a fuel cell stack that are configured to increase fuel cell stack efficiency.
Resumen de: US2025183340A1
A membrane electrode assembly includes an anion conducting membrane and electrodes. The membrane electrode assembly is made from two different polymers in one system. The membrane electrode assembly of this invention is suitable for use in electrochemical devices, including anion exchange membrane electrolyzers.
Resumen de: US2025183343A1
The present invention is directed to a method and apparatus for simultaneously implementing mechanochemical and electrochemical synthesis conditions. With respect to the method, the method may be configured to improve one or more reaction metric such as increasing product yield, reducing organic solvent consumption, reducing the reaction time, reducing the amount of, or completely eliminating, at least one toxic reagent or solvent, or enabling electrochemical synthesis of the chemical product without complete solubility of the organic substrate in the organic solvent. With respect to the apparatus, the apparatus is configured to define a reaction area between an anode and cathode that can be mechanochemically agitated to improve synthesis without disrupting the electrochemical reaction.
Resumen de: US2025183326A1
An electrode catalyst includes a mesoporous carbon support having pores, and catalyst metal particles supported in at least some of the pores of the support. The catalyst metal particles are constituted by an alloy of platinum and at least one transition metal selected from Groups 3 to 12 elements of the periodic table. An average degree of alloying of the electrode catalyst calculated by Equation (1) below is 40% or more. A ratio r/R of a mean particle size r of the catalyst metal particles to a modal pore size R of the mesoporous carbon support is from 0.20 to 0.95. Equation (1) is: Degree (%) of alloying=lattice constant of alloy calculated from XRD−lattice constant of platinum/theoretical value of lattice constant of alloy−lattice constant of platinum×100.
Resumen de: US2025183421A1
A hybrid energy system and process of preparation thereof to generate hydrogen and electricity simultaneously, which is cost effective. Provided is an iron-doped hollow carbon nanorod (FeHCNR) by utilizing polydopamine (PDA), as a potential bifunctional catalyst for empowering both hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). Further provided is a method of preparation of FeHCNR and use thereof in hybrid battery system for simultaneous generation of electricity and hydrogen.
Resumen de: US2025183342A1
To provide a liquid composition capable of forming a polymer electrolyte membrane which is excellent in the initial power generation characteristics when made into a membrane electrode assembly, and which is excellent in durability and has few defects. This liquid composition comprises a liquid medium, a sulfonic acid group-containing fluorocarbon polymer and a hardly soluble cerium compound, wherein the ion exchange capacity of the sulfonic acid group-containing fluorocarbon polymer is from 1.36 to 2.50 meq/g dry resin, the average particle size of the hardly soluble cerium compound is from 1 nm to 3,000 nm, and the ratio of the total number of moles of cerium atoms in the hardly soluble cerium compound to the total number of moles of sulfonic acid groups in the sulfonic acid group-containing fluorocarbon polymer is from 0.001 to 0.3.
Resumen de: US2025183331A1
An electrical connection assembly for a bipolar plate of a fuel cell includes at least one bimetal element connected to the bipolar plate, an NTC heating element, and an electrically conductive plug connector element provided for placement on the bipolar plate. When the plug connector element is plugged on the bipolar plate an electrically conductive connection between the bipolar plate and the plug connector element is established by the NTC heating element and a connection connected electrically in parallel to the NTC heating element is established by the bimetal element only in a predetermined temperature range.
Resumen de: US2025179250A1
The present invention relates to a method for the preparation of a sulfonated polyarylenesulfone polymer (sP), the sulfonated polyarylenesulfone polymer (sP) obtained by the inventive process, a membrane (M) comprising the sulfonated polyarylenesulfone polymer (sP), a process for the preparation of the membrane, and the use of the membrane (M) for the separation of gases from gas mixtures.
Resumen de: DE102023211910A1
Die Erfindung betrifft einen Stack (1), umfassend ein Gehäuse (2) sowie einen im Gehäuse (2) aufgenommenen Zellstapel (3) aus einer Vielzahl elektrochemischer Zellen (4), die im Wesentlichen eine rechteckige Grundform mit zwei Längsseiten (4.1) und zwei Querseiten (4.2) aufweisen und jeweils senkrecht in Bezug auf einen Boden (2.1) des Gehäuses (2) ausgerichtet sind, so dass die Stapelrichtung (8) parallel zum Boden (2.1) verläuft. Erfindungsgemäß ist der Zellstapel (3) mit mindestens einem Gleitelement (5) verbunden, über das der Zellstapel (3) auf einer gehäuseseitigen Gleitfläche (6) gelagert ist, so dass der Zellstapel (3) in Stapelrichtung (8) relativ zum Gehäuse (2) beweglich ist.
Resumen de: DE102024134791A1
Eine Einzelzelle für eine Brennstoffzelle umfasst eine Membran-Elektroden-Einheit, zwei Gasdiffusionsschichten, die die Membran-Elektroden-Einheit in die Mitte nehmen, und zwei Separatoren, die die Membran-Elektroden-Einheit und die zwei Gasdiffusionsschichten in die Mitte nehmen. Die Gasdiffusionsschicht hat einen Elastizitätsmodul von größer oder gleich 1800 MPa und eine Dicke von 0,12 mm bis 0,25 mm einschließlich. Jeder Separator weist eine Nut auf, die einen Abzweigungsteil hat. Die Nut bildet einen Durchlass, der der Membran-Elektroden-Einheit das Reaktionsgas zuführt. Ein Wert, der durch Dividieren eines Durchmessers eines Inkreises des Abzweigungsteils in der Nut durch eine Breite eines allgemeinen Teils in der Nut erhalten wird, ist kleiner oder gleich 2,5.
Resumen de: DE102023212082A1
Die Erfindung betrifft ein Betriebsverfahren (17) für ein Brennstoffzellensystem (1), das eine Brennstoffzelle (2), die einen Anodenraum (3), einen Kathodenraum (4) und eine Elektrolytmembran (5) aufweist, eine Anodengaszuführleitung (6), in der ein Anodengaszuführventil (8) angeordnet ist, eine Kathodengaszuführleitung (9), in der ein Kathodengaszuführventil (11) angeordnet ist, und eine Kathodengasabführleitung (12) aufweist, in der ein Kathodengasabführventil (14) angeordnet ist.Zum Öffnen eines vereisten kathodenseitigen Ventils (11, 14) schlägt das Betriebsverfahren (17) vor,- dass zum Einschalten des Brennstoffzellensystems (1) die beiden kathodenseitigen Ventile (11, 14) zum Öffnen angesteuert werden,- dass für den Fall, dass das eine kathodenseitige Ventil (11, 14) sich nicht öffnen lässt und dadurch ein fehlerhaftes Ventil bildet, das andere kathodenseitige Ventil (11, 14), das öffnet und dadurch ein fehlerfreies Ventil bildet, wieder zum Schließen angesteuert wird,- dass nach dem Schließen des fehlerfreien Ventils das fehlerhafte Ventil wieder oder weiterhin zum Öffnen angesteuert wird und das Anodengaszuführventil (8) ebenfalls zum Öffnen angesteuert wird,- dass nach dem Schließen des fehlerfreien Ventils und dem Öffnen des Anodengaszuführventils (8) abgewartet wird bis sich im Kathodenraum (4) ein Öffnungsdruck aufbaut, der das Öffnen des weiterhin zum Öffnen angesteuerten fehlerhaften Ventils unterstützt.
Resumen de: US2025183339A1
A method for controlling a temperature of a fuel cell system, FCS, of a vehicle is provided. The FCS has at least one fuel cell and a thermal management system for the at least one fuel cell, said thermal management system having a fluid circuit for circulating a coolant. A heater regulates a temperature of said coolant. The method comprises predicting an FCS power demand for a given time horizon; predicting a power capability of the FCS for the given time horizon; and on the basis of said predicted power capability of the FCS and said predicted FCS power demand, operating the heater so as to control the temperature of said FCS during said time horizon.
Nº publicación: DE102023211935A1 05/06/2025
Solicitante:
BOSCH GMBH ROBERT [DE]
Robert Bosch Gesellschaft mit beschr\u00E4nkter Haftung
Resumen de: DE102023211935A1
Die Erfindung betrifft ein Verfahren (10) zur Herstellung einer elektrochemischen Zelle (12), insbesondere Elektrolysezelle (14), aufweisend ein Zellsubstrat (16), eine erste Elektrodenschicht (26), sowie aufweisend eine Elektrolytschicht (24), wobei zunächst (S1) die Elektrolytschicht (24) auf ein Transfersubstrat (18) aufgebracht wird, anschließend (S2) die erste Elektrodenschicht (26) auf die Elektrolytschicht (24) aufgebracht wird, in einem weiteren Schritt (S3a) die erste Elektrodenschicht (26) mit der Elektrolytschicht (24) und dem Transfersubstrat (18) auf das Zellsubstrat (16) laminiert wird und in einem anschließenden Schritt (S3b) das Transfersubstrat (18) entfernt wird. Es wird vorgeschlagen, dass die Elektrolytschicht (24) mit einer Dünnschicht-Methode auf das Transfersubstrat (18) abgeschieden wird.