Resumen de: WO2024078690A1
A fuel cell system (12) comprising at least one fuel cell (22) and at least one cooling system (24) configured to cool the at least one fuel cell (22). The at least one cooling system (24) comprises at least one fluid intake (16), one or more cooling fans (32) located downstream of the at least one fluid intake (16), and at least one radiator (28) located upstream and/or downstream of the one or more cooling fans (32). The fuel cell system (12) also comprises an exhaust flow passage (20) configured to convey fuel cell exhaust (18) emitted from the at least one fuel cell (22) away from the at least one fuel cell (22), and at least one valve (30) configured to selectively direct an amount of the fuel cell exhaust (18) in the exhaust flow passage (20) into the at least one cooling system (24) via the at least one fluid intake (16) and/or via at least one inlet (20C) located between said one or more cooling fans (32) and said at least one radiator (26).
Resumen de: EP4604223A1
A battery system includes an anode circuit (12) configured to urge a flow of anolyte therethrough to an anode side of an electrode and a cathode circuit (16) configured to urge a flow of catholyte therethrough to a cathode side of the electrode. An electric circuit is operably connected to the electrode to utilize electrical energy generated via a chemical reaction between the flow of anolyte and the flow of catholyte at the electrode. The flow of anolyte is driven through the anode circuit (12) by thermal expansion and/or thermal contraction of one or more components of the anode circuit (12). The flow of catholyte is driven through the cathode circuit (16) by thermal expansion and/or thermal contraction of one or more components of the cathode circuit (16).
Resumen de: AU2023390125A1
Catalyst ink formulas for the preparation of CCMs are described. The catalyst ink formulas comprise a catalyst, an ionomer, a solvent, and a porogen soluble in the solvent. The catalyst ink formula may also comprise an additive, such as an electron conductive polymer. The anode catalyst coating layer or both the anode and the cathode catalyst coating layers prepared from the catalyst ink formula comprises uniformly distributed nanopores that allow easy gas removal and uniform water feed distribution, which will avoid or reduce the direct energy losses for the electrolyzers. Catalyst coated membranes and methods of making a catalyst coated membranes are also described.
Resumen de: WO2024081935A1
Integrated energy systems, such as for use in producing sodium formate and/or processing sodium formate to generate hydrogen as an energy carrier and that produce few or no carbon emissions, and associated devices and methods are described herein. A representative integrated energy system can include a power plant system having multiple modular nuclear reactors. The nuclear reactors can generate electricity and steam for direct use in a sodium formate process or for use in an electrical power conversion system to generate electricity for use in the sodium formate process or for supply to a power grid. Individual ones of the nuclear reactors can be configured to flexibly generate differing outputs of steam or electricity based on a demand state of the power grid—for example, supplying excess electricity and/or steam to the sodium formate process during off-peak hours.
Resumen de: WO2024081697A1
A carbon-oxygen battery system, including: a Boudouard reactor in fluid communication with an electrochemical cell, wherein the electrochemical cell has a CO/CO2 inlet, a CO/CO2 outlet, and an oxygen outlet, and wherein the CO/CO2 outlet is fluidly connected by a first stream to an inlet of the Boudouard reactor, and wherein the CO/CO2 inlet is fluidly connected by a second stream to an outlet of the Boudouard reactor; and a CO/CO2 tank fluidly connected to at least one of the first stream or the second stream.
Resumen de: EP4603490A1
The purpose of the present invention is to provide a compound capable of producing a polymer having excellent alkali durability, a polymer including the compound as a monomer, an electrolyte membrane having excellent alkali durability using the polymer, and a fuel cell and an electrolysis apparatus using the electrolyte membrane. A compound represented by the following Formula (1) and a polymer including the compound as a monomer. (X<1>-)2Ar<1>(-L<1>-R
Resumen de: WO2024078724A1
A fuel cell system (100) is disclosed, comprising: - a fuel cell stack (101) configured to react hydrogen and oxygen to produce electric power, - a metal source (110), - an oxidiser furnace (111) configured to react metal supplied from the metal source with water to form metal oxide and generate hydrogen gas, - a hydrogen supply arrangement (125) configured to supply hydrogen gas generated in the oxidiser furnace to fuel cell stack, - a first expander (112) arranged in a conduit (125a) of the hydrogen supply arrangement (125), the first expander being configured to expand a gas mixture from the oxidiser furnace, the gas mixture comprising the hydrogen gas and excess water steam, - a compressor (114) configured to provide compressed air to the fuel cell stack, wherein the compressor is configured to be driven by energy recuperated from the first expander.
Resumen de: WO2024143170A1
This fuel cell device comprises a reformer, a fuel cell, and a control device. The control device acquires a first value obtained by detecting a supply amount of each of raw materials. The control device calculates a first ratio and a second ratio on the basis of the respective first values. When at least one of the first ratio and the second ratio is outside an acceptable range determined for each of the ratios, if the difference between a second value and the first value is greater than or equal to a threshold value, the control device changes a setting value for the relevant raw material to the first value and changes a setting value for the other raw material of the two raw materials.
Resumen de: WO2024170822A1
The invention relates to a composite material layer for a fuel cell, a single-layer solid oxide fuel cell and a method for manufacturing the same. According to the invention, a material layer for a single-layer solid oxide fuel cell comprises fused nanoparticles being selected to provide reaction sites for hydrogen oxidation and oxygen reduction as well as to provide for ionic transport in said layer. The surface of at least one side of said layer is engraved (preferable both sides are engraved) to increase the surface area of the fuel cell layer.
Resumen de: CN120511318A
本发明提供了一种金属双极板复合涂层及其制备方法、金属双极板和燃料电池,属于燃料电池金属双极板技术领域。所述金属双极板复合涂层沿远离金属基材的方向依次包括金属打底层和混合金属过渡层,所述混合金属过渡层包括第一金属材料和第二金属材料;所述混合金属过渡层中,所述第一金属材料的含量和所述第二金属材料的含量沿金属基材的厚度方向呈梯度变化。本发明通过在双极板基材上引入金属打底层和混合金属梯度过渡层,能够针对性地解决在超高电位下金属打底层易于剥落的技术问题。
Resumen de: CN120511329A
本发明涉及电堆封装技术领域,具体涉及带微通道冷却的氢燃料电池堆模块化封装装置,包括用于安装集成电堆的导向框架,所述集成电堆包括位于电堆极板以及位于其两端的电堆端盖,所述导向框架包括多个导向块,多个所述导向块的内侧均设置有导向端面,所述导向框架的外侧滑动设置有夹持部件,所述夹持部件包括横向夹持板以及纵向夹持板,所述夹持部件的内部均设置有冷却通道。本发明导向框架中导向端面的设置,能够将两侧带有电堆端盖的集成电堆滑动安装至预设位置,能够对电堆端盖的多个端面进行密封,在达到集成电堆安装目的的同时,还能够达到更好的封装效果,提高产品组装的速率,避免批量生产中可能需要多个大型装置辅助封装的情况。
Resumen de: CN120511330A
本发明涉及电池技术领域,提供了一种电堆模组及其调控方法,包括下层配气板、旁通空气配气管和呈阵列排布的若干列电堆;下层配气板贯通开设有空气进口和空气出口,空气进口的上方为空气进气区,空气出口的上方为空气出气区,空气经空气进口进入空气进气区后,依次流经所有列电堆进入空气出气区,通过空气出口出气;每一列电堆的进气侧和出气侧均设置有温度热电偶,两列相邻电堆间隙设有旁通空气配气管,且旁通空气流量基于空气进口流量和温度热电偶测量值控制,使所有列电堆进气侧温度一致。可满足多堆模组的功能集成,又可在降低空气的需求量下保证模组内部良好的温度控制,提高系统效率。
Resumen de: CN120505637A
本发明提供一种膜电极及其制备方法与电化学装置和电解水制氢方法。该膜电极包括依次层叠的阴极催化层、质子交换膜、阳极催化层;阳极催化层由阳极催化剂浆料形成;阳极催化剂浆料的制备方法包括:将阳极催化剂、树脂、溶剂混合,得到第一中间溶液;将第一造孔剂加入第一中间溶液中搅拌,得到阳极催化剂浆料;第一造孔剂包括碳材料,搅拌的转速小于等于1000转/分钟,搅拌的时间小于等于30min。本发明还提供了上述膜电极的制备方法,包含膜电极的电化学装置和电解水制氢的方法。该膜电极的催化层浆料中含有造孔剂,在催化层具有多孔结构的同时还能避免造孔剂去除过程引起的催化剂流失,使膜电极的催化性能和耐久性得以提高。
Resumen de: CN120511322A
本发明公开了一种氢燃料电池的低温吹扫方法、装置、设备及存储介质。所述低温吹扫方法,包括:当收到关机指令时,对氢燃料电池进行吹扫,以排出氢燃料电池中的水分;当监测所述氢燃料电池的阻抗达到预设的电阻阈值时,使用冷却循环回路对氢燃料电池进行降温;当监测到所述氢燃料电池的阳极侧的温度降低到预设的温度阈值时,吹扫所述氢燃料电池的阳极侧中的冷凝水。本申请的技术方案可对氢燃料电池中的水蒸气进行降温,使其形成冷凝水,并将该冷凝水吹扫出氢燃料电池。在温度降低到结冰点后,避免发生氢燃料电池中水蒸气导致的结冰的情况。
Resumen de: CN120511328A
本发明公开了一种锌溴液流电池电解液及锌溴液流电池,锌溴液流电池电解液包括锌盐、钾盐、钠盐、铵盐、溶剂、含硫共溶剂及添加剂;本发明通过引入含硫共溶剂优化锌离子的溶剂化结构,以实现更稳定的锌沉积行为和高效的电化学性能。具体地,所述含硫共溶剂通过选择性地占据锌离子的第二溶剂化壳层,有效调控锌离子与水的配位环境,稳定锌离子配位环境,促进锌的均匀沉积;同时共溶剂的氧原子对质子具有较强的束缚作用,抑制析氢反应的发生。
Resumen de: CN120511320A
本申请公开了一种质子交换膜燃料电池系统的阳极吹扫方法和装置及介质,可应用于燃料电池技术领域。本申请当请求电流大于或等于怠速电流,根据请求电流计算质子交换膜燃料电池系统中电堆目标平均单体电压,并获取最低实际单体电压和电堆实际平均单体电压以及电堆的阴阳极压差后,根据最低实际单体电压、电堆实际平均单体电压、电堆目标平均单体电压和阴阳极压差确定质子交换膜燃料电池系统的阳极目标吹扫模式,接着根据阳极目标吹扫模式控制质子交换膜燃料电池系统的阳极吹扫状态;本实施例通过结合燃料电池在阳极超低频吹扫条件下的性能表现数据来确定阳极目标吹扫模式,进而能够有效提高质子交换膜燃料电池系统的稳定性和安全性。
Resumen de: CN120505656A
本发明提供了一种电解水催化剂浆料及其制备方法与膜电极及电化学装置和电解水制氢方法。该制备方法包括:将催化剂、树脂、溶剂混合,得到中间溶液;将造孔剂加入所述中间溶液中搅拌,得到电解水催化剂浆料;造孔剂包括碳材料,搅拌的转速小于等于1000转/分钟,所述搅拌的时间小于等于30min。本发明还提供了上述制备方法得到的电解水催化剂浆料,由该电解水催化剂浆料制成的膜电极,包含该膜电极的电化学装置和电解水制氢的方法。上述电解水催化剂浆料可以通过添加造孔剂获得多孔催化层、同时避免造孔剂去除过程引起的催化剂流失,提高膜电极的催化性能和耐久性。
Resumen de: CN120511325A
本发明涉及固体氧化物燃料电池技术领域,且公开了一种SOFC‑储热‑热泵多能互补系统及协同控制方法,所述系统包括:燃料处理模块、SOFC发电装置,及燃气轮机、储热系统、热泵。本发明还公开了一种SOFC‑储热‑热泵多能互补系统协同控制方法,包括以下步骤:S1:建立全局优化层‑设备控制层‑执行层三级协同控制架构;S2:构建信息交互框架;S3:构建动态能量管理策略,实施余热分级调度;S4:构建电力‑热力协同优化调控模式;S5:构建优化目标函数,定时优化目标,进行滚动优化;S6:进行优化目标函数权重系数的校准及预测时域与控制时域的平衡的校准。本发明实现了最小化运行成本、最大化可再生能源消纳、延长设备寿命的效果。
Resumen de: CN120507068A
本发明公开了一种柔性μDAFC/应变传感器封装集成一体化仿生复合器件的制备方法,所述方法制备了一种高度模仿人体皮肤功能与结构的供能/感知一体化复合电子皮肤器件,采用激光诱导石墨烯技术,创新性地开展封装/极板/扩散层一体化μDAFC膜电极的设计;采用超润湿碳气凝胶材料开展液体醇类燃料的固态化供给结构设计,实现燃料供给过程的微观调控,改善柔性μDAFC的可靠性。另一方面,本发明创新性地在μDAFC柔性封装材料内直接进行传感器敏感阵列结构的原位制备,即在柔性基底上实现微型燃料电池电极及传感器电极两种不同的微结构,无需封装过程即可实现高性能的应变/温度传感器阵列,实现了高集成度的自供电电子皮肤器件。
Resumen de: CN120511323A
本发明要解决的问题是提供一种方法,所述方法能够以更短的时间使固体高分子型燃料电池活化。为了解决上述问题,本发明提供一种固体高分子型燃料电池的活化方法,所述固体高分子型燃料电池具有阳极与阴极隔着固体高分子膜相对向配置的电极膜结构体,所述固体高分子型燃料电池的活化方法是,一边以在规定的范围内(优选为100℃以上且300℃以下,更优选为100℃以上且200℃以下,进而优选为100℃以上且150℃以下的范围内)设定的设定温度对所述固体高分子型燃料电池加热,一边将加湿后的加湿含氢气体加压并供给至所述阳极,将加湿后的加湿含氧气体或者加湿含氮惰性气体加压并供给至所述阴极。
Resumen de: CN120505636A
本发明提供了一种膜电极及其制备方法与电化学装置和电解水制氢方法。该膜电极包括依次层叠的阳极催化层、质子交换膜、阴极催化层;阳极催化层包括两个以上层叠的阳极催化亚层,由质子交换膜向外,各阳极催化亚层的孔隙率增加;阳极催化亚层由阳极催化剂浆料形成,阳极催化剂浆料的制备方法包括:将阳极催化剂、树脂、溶剂混合得到阳极催化剂浆料;或者,将阳极催化剂、树脂、溶剂混合得到第一中间溶液,将第一造孔剂加入第一中间溶液中搅拌得到阳极催化剂浆料。本发明还提供了上述膜电极的制备方法以及膜电极的应用。上述膜电极能够降低气体的传输阻力,并且催化性能稳定。
Resumen de: CN120507672A
本发明提供一种融合电解制氢及氢燃料电池的电性能校准装置及方法,包括:上位机、第一数字化采样电压表、第二数字化采样电压表、同步数据采集卡、同步巡检开关、电流变换器、电压变换器、电堆、可编程电源、自校准模块、外部校准信号源;同步巡检开关用于检测电堆的单池电压总线,再反馈给第一数字化采样电压表的采样端,第一数字化采样电压表的反馈端与上位机的第一输入端连接;电流变换器用于检测电堆的电流回路;电压变换器用于检测所述电堆的总电压;可编程电源与电堆的电源接线端连接。本发明解决在对电解制氢及氢燃料电池进行电性能校准时存在同步性差、自校准缺失、阻抗测量精度低、双向计量不兼容的问题。
Resumen de: CN120511327A
本发明公开了一种低碳高能量利用率的直接氨燃料电池汽车结构装置,包括了氨燃料电池堆、氨水供给、空气供给、电控、温控、以及余氨回收等多个系统。将纯液氨转化为氨与水的混合物,通过燃料电池堆的氨气氧化还原进行发电,将电能驱动汽车行驶。余氨回收的设计,有效降低氨气尾气排放,解决氨燃料电堆废气排放问题的难点。汽车根据车辆行驶状态、路况、液氨配备氨水的速率、氢氧化还原反应发电功率大小选择调整燃料电池发电堆的合理利用,可根据不同情况选择最优组合,有效的延长了单罐液氨携带量下的汽车的续航里程。储氨相对与储氢减少了高额的成本且对容器要求较低,本发明具有能量转化率高、低成本、运输技术成熟的特点。
Resumen de: CN120511319A
本发明公开了一种提高氢燃料电池系统有效净输出功率的装置和方法,包括液氢罐、换热器、电热器、空压机、电堆、散热器、热电发电机及连接管路。通过将液态氢气的冷能合理的分配给空气和冷却液,冷却后的空气再进入空压机能降低空压机的能耗;同时将经过热交换后的冷却液提供给热电发电机的冷端,将电堆产生的高温气体的热能通过冷却水提供给热电发电机的热端,进而产生额外的电能,以此可以整体提升燃料电池系统的整体净输出功率。此外,还可根据电堆的工作电流,合理分配液态氢气的冷能,可进一步优化提升燃料电池系统的整体净输出功率。
Nº publicación: CN120511326A 19/08/2025
Solicitante:
中石油深圳新能源研究院有限公司中国石油天然气股份有限公司
Resumen de: CN120511326A
本发明涉及一种无机阴离子交换膜及其制备方法与应用。所述无机阴离子交换膜包括OH‑插层的层状双氢氧化物,简写作OH‑LDHs,其中,LDHs表示层状双氢氧化物;所述OH‑LDHs为MgAl层状双氢氧化物,其中,Mg和Al的摩尔比为2~4:1。本发明采用氧化镁和偏铝酸盐通过界面溶解‑再沉积法制备得到具有超高比表面积的OH‑插层的层状双氢氧化物,然后将OH‑插层的LDHs通过压片制备得到LDHs无机阴离子交换膜。该OH‑LDHs无机阴离子交换膜具有OH‑插层和大表面积以及耐碱性的特征,从而具有高电导率以及避免传统阴离子交换膜易降解的问题。