Resumen de: WO2025186581A1
The invention relates to a sodium metal cell comprising a cathode electrode and an anode electrode disposed in an opposite face-to-face arrangement with a separator therebetween, and in which the anode electrode and the separator are located in contact with opposite sides of a free-standing polymeric substrate. A method of manufacturing said sodium metal cell is also disclosed.
Resumen de: WO2025188361A2
Disclosed are compositions comprising a first component comprising an isocyanate-functional prepolymer; a second component comprising a polyurethane polyol; an aromatic diamine; and a filler in an amount of greater than 50% by weight to 88% by weight based on total weight of the composition. Also disclosed are methods for treating a substrate with any of the compositions disclosed herein. Also disclosed are substrates comprising a coating formed from any of the compositions disclosed herein on a substrate surface, and optionally a dielectric coating on the substrate surface. Also disclosed are systems and kits comprising a dielectric coating composition and any of the coating compositions disclosed herein.
Resumen de: FR3160059A1
L’invention concerne un assemblage (1), notamment pour un véhicule, comportant :- un support multifonction (10) configuré pour supporter au moins deux composants à fonction fluidique (21, 22), le support multifonction (10) comportant au moins un canal (11) de circulation de fluide caloporteur configuré pour être relié fluidiquement à un circuit de fluide caloporteur,- un boîtier (30) configuré pour recevoir une unité de contrôle électronique centralisée (31) des composants à fonction fluidique (21, 22), ledit boîtier (30) étant configuré pour pouvoir être assemblé avec le support multifonction (10),l’assemblage (1) étant caractérisé en ce qu’il comprend une paroi froide (40), ladite paroi froide (40) comprenant un passage (41) de circulation de fluide caloporteur, ledit passage (41) de circulation de fluide étant relié fluidiquement au canal (11) de circulation de fluide caloporteur, ladite paroi froide (40) étant configurée pour être en contact avec l’unité de contrôle électronique centralisée (31). Figure de l’abrégé : Figure 1
Resumen de: FR3160061A1
La présente invention concerne un dispositif (1) de stockage électrique comprenant deux cellules électrochimiques (3) de stockage électrique adjacentes, une plaque de refroidissement (5) des deux cellules électrochimiques (3), un circuit de refroidissement (6) des cellules électrochimiques par un liquide diélectrique (7), les cellules électrochimiques (3) et la plaque de refroidissement (5) étant partiellement immergées dans ce liquide diélectrique (7), caractérisé en ce que la plaque de refroidissement (5) comporte un caloduc (9) comprenant un fluide de travail, une partie dite condenseur (9a) disposée dans la partie immergée des cellules électrochimiques (3) et une partie dite évaporateur (9b) disposée dans la partie émergée des cellules électrochimiques (3). Figure 1
Resumen de: FR3160058A1
PROCEDE POUR OPTIMISER LE TAUX DE MASSE NOIRE RECUPEREE D’ELEMENTS DE BATTERIE Procédé pour récupérer la masse noire (BM1) d’un ensemble d’éléments de batterie (ENS1) constituants d’une ou d’une pluralité de batteries comprenant : Récupération d’un ensemble d’éléments de batterie (EB1, ENS1) ;Décharge électrique (DE1) des éléments de batterie (EB1) ;Broyage humide (BR1) des éléments de batterie (EB1) en présence d’un volume d’eau ;Premier séchage (SEC1) pour induire une désorption thermique des éléments de batterie broyés (EB2) à une température régulée comprise entre 90° et 120° ;Tamisage (TAM1) des éléments de batterie broyés (EB2) et séchés et extraction d’une première quantité de masse noire (BM1). Figure pour l’abrégé : Fig.5
Resumen de: FR3160063A1
Une méthode permettant d’améliorer la durée de vie en cyclage d’un élément électrochimique sodium-ion comprenant une électrode positive à base d’un oxyde de structure cristallographique O3. Cette méthode est fondée sur le blocage de la transformation de la structure cristallographique P3 en la structure cristallographique O3 après que la première transformation de la structure cristallographique O3 en la structure cristallographique P3, qui a lieu lors de la première charge de l’élément, se soit produite. Le maintien de la structure P3 est obtenu en tirant profit d’une part de la propriété de certains métaux de transition de favoriser la formation de la structure cristallographique P3 pour des états de charge proches de l’état complètement déchargé de l’élément et d’autre part du fait que l’irréversibilité créée par un excès d’électrode négative arrête plus tôt la sodiation de l’oxyde au cours de la décharge et ainsi bloque la transformation de la structure cristallographique P3 en la structure cristallographique O3. Figure d’abrégé : Figure 3
Resumen de: FR3160060A1
L’invention concerne un assemblage (1), notamment pour un véhicule, comportant :- un support multifonction (10) configuré pour supporter au moins deux composants à fonction fluidique (21, 22), le support multifonction (10) comportant au moins un canal (11) de circulation de fluide caloporteur configuré pour être relié fluidiquement à un circuit de fluide caloporteur,- un boîtier (30) configuré pour recevoir une unité de contrôle électronique centralisée (31) des composants à fonction fluidique (21, 22), ledit boîtier (30) étant configuré pour pouvoir être assemblé avec le support multifonction (10),l’assemblage (1) étant caractérisé en ce qu’il comprend une paroi froide (40), ladite paroi froide (40) comprenant un passage (41) de circulation de fluide caloporteur, ledit passage (41) de circulation de fluide étant relié fluidiquement au canal (11) de circulation de fluide caloporteur, ladite paroi froide (40) étant configurée pour être en contact avec l’unité de contrôle électronique centralisée (31). Figure de l’abrégé : Figure 1
Resumen de: WO2025186643A1
The present disclosure relates to a thermal barrier for being disposed between battery cells of a battery assembly, said thermal barrier comprising: a layer of a nonwoven fibrous thermal insulation comprising a fiber matrix of inorganic long fibers; a binder dispersed within the fiber matrix so as to hold together the fiber matrix; first particles dispersed within the fiber matrix, wherein the first particles are thermally insulative inorganic particles; an optional organic encapsulation layer encapsulating the layer of nonwoven fibrous thermal insulation; and an optional inorganic encapsulation layer encapsulating the layer of nonwoven fibrous thermal insulation; wherein the thermal barrier further comprises second particles dispersed within the fiber matrix, and wherein the second particles are different from the first particles, and wherein the second particles are organic particles; and wherein the thermal barrier is compressible. The present disclosure further relates to a process for making said thermal barrier and to a battery cell module for an electric vehicle, the battery cell module comprising a plurality of battery cells disposed in a housing and a plurality of said thermal barriers.
Resumen de: FR3159937A1
L’invention concerne un procédé, mis en œuvre par un système de calculs (4) embarqué dans un véhicule électrique ou hybride, de correction d’un profil de courant électrique de charge (3) injecté en entrée d’une batterie électrique (2) du véhicule, le système de calculs (4) comprenant une mémoire (10) stockant un modèle électrothermique prédéfini (12), le modèle électrothermique prédéfini et la batterie électrique (2) fournissant chacun en sortie respectivement des premières et des secondes valeurs de tension électrique (18A, 18B) et de température (20A, 20B) ;le procédé comportant les étapes suivantes :- un calcul d’une erreur de tension (E1) et d’une erreur de température (E2) ;- un calcul d’un premier profil de courant électrique de charge (P1) et d’un second profil de courant électrique de charge (P2) ; et - une application en entrée de la batterie électrique (2) d’un profil de courant électrique de charge corrigé (P3). Figure 1
Resumen de: FR3160018A1
L’invention concerne un procédé de surveillance de la température de modules d’une batterie d’un véhicule automobile électrique ou hybride comportant une étape de mesure (E1) de la température par chaque capteur de température de chaque module ; une étape de détection (E2) d’un défaut lorsqu’au moins l’une des valeurs de température mesurée est inférieure à une valeur seuil minimale ou supérieure à une valeur seuil maximale ; une étape d’avertissement (E3) durant laquelle on procède à un avertissement du conducteur lorsqu’au moins l’un des modules présente un seul défaut ou durant laquelle on procède à une limitation de la puissance et à une demande d’autorisation de l’ouverture des contacteurs de la batterie lorsqu’au moins l’un des modules présente plusieurs défauts. Figure 1
Resumen de: FR3160062A1
Procédé de prétraitement d’une anode pour cellule électrochimique de batterie électrique, comprenant les étapes suivantes : a) fournir une anode, b) placer l’anode en présence d’un gaz de fluorure de sulfuryle (SO2F2) jusqu’à formation d’une couche comprenant les groupements -F et -SO2F en surface de l’anode, c) retirer le gaz de SO2F2 pour stopper la réaction entre le SO2F2 et le matériau de l’anode, et d) récupérer l’anode prétraitée obtenue.
Resumen de: WO2025188400A1
Electrochemical cells are provided. An electrochemical cell may include a cell housing. The cell housing may include a cylindrical container having an interior radius and a closure. The electrochemical cell may further include a cathode positioned within the cylindrical container and defining a plurality of cylindrical openings therein, a cylindrical anode disposed within each opening of the plurality of cylindrical openings to form a plurality of anodes, a current collector extending into each anode of the plurality of anodes and electrically connecting each anode of the plurality of anodes with a negative terminal of the cell housing, and a separator disposed within each opening of the plurality of cylindrical openings and between each anode and the cathode. A relative anode distance parameter for the electrochemical cell may be between 0.4 and 0.8.
Resumen de: WO2025186062A1
The invention relates to a temperature control device, in particular for controlling the temperature of storage modules (10) for electrical energy, such as battery modules composed of cylindrical battery cells (14), having a throughflow body (24) which has a cavity (28) and through which a temperature control fluid can flow from an inlet (30) to an outlet (32). Said device is characterized in that the throughflow body (24) consists of a bellows body, in particular a bellows (26), the bellows folds (34) of which extend between two end parts (36) in such a way that the axial distance (X) between the end parts (36) can be varied in the context of a compensating movement. The invention further relates to a temperature control device and to an associated storage device.
Resumen de: WO2025186044A1
The present invention relates to a method, a control device (160), a battery device diagnostic device (170) and a computer program for determining a thermal runaway of a battery arrangement, and to a battery device (100) and a vehicle. The method according to the invention comprises receiving a thermal conductivity signal from a thermal conductivity sensor (140), receiving a presence signal from a pellistor (150), detecting a thermal runaway of the battery arrangement (120) if both the received thermal conductivity signal indicates a thermal conductivity of the gas mixture within the battery housing (110) which exceeds a predetermined thermal conductivity threshold value and the received presence signal indicates the presence of a combustible gas component in the gas mixture within the battery housing (110), and transmitting an error signal if a thermal runaway of the battery arrangement (120) has been determined, wherein the error signal is representative of a thermal runaway of the battery arrangement (120).
Resumen de: WO2025186273A1
The invention relates to a method for recovering the black mass (BM1) from a set of battery elements (ENS1) making up one or a plurality of batteries, the method comprising: ■ retrieving a set of battery elements (EB1, ENS1); ■ electrically discharging (DE1) the battery elements (EB1); ■ wet grinding (BR1) the battery elements (EB1) in the presence of a volume of water; ■ first drying step (SEC1) in order to induce thermal desorption of the crushed battery elements (EB2) at a controlled temperature ranging from 90° to 120°; ■ sieving (TAM1) the crushed, dried battery elements (EB2) and extracting a first amount of black mass (BM1).
Resumen de: WO2025186518A1
The present invention relates to an electrical storage device (1) comprising two adjacent electrical storage electrochemical cells (3), a cooling plate (5) for cooling the two electrochemical cells (3), a dielectric liquid (7), a cooling circuit (6) for cooling the electrochemical cells via this dielectric liquid (7), wherein the electrochemical cells (3) and the cooling plate (5) are partially submerged in this dielectric liquid (7), characterised in that the cooling plate (5) comprises a heat pipe (9) that comprises a working fluid, a portion referred to as the condenser (9a) arranged in the submerged portion of the cooling plate (5) and a portion referred to as the evaporator (9b) arranged in the emerged portion of the cooling plate (5).
Resumen de: WO2025186146A1
Disclosed a method for treating sulfate in an industrial process, the method comprising the steps of: a) contacting a first solution containing metal sulfate, preferably transition metal sulfate, with a second solution containing potassium hydroxide, whereby obtaining: a. a first precipitated material comprising metal hydroxide and b. a third solution containing potassium sulfate; b) recovering the third solution; c) providing a salting-out agent, preferably containing at least one of a source of potassium hydroxide and a source of ammonia; d) adding the salting-out agent to and mixing with the third solution, whereby obtaining: a. a second precipitated material comprising potassium sulfate and b. a fourth solution containing the salting-out agent; and e) recovering the second precipitated material and the fourth solution.
Resumen de: WO2025186116A1
The present invention refers to a plant for recycling lithium ion battery material, comprising a battery material processing facility (100) and a gas incineration facility (200), wherein the battery material processing facility (100) comprises a monitoring unit (120) configured to provide a data signal with information about a current off-gas outflow, and the gas incineration facility (200) comprises at least a combustion chamber (210) with a flare (211), at least one off-gas supply line (231, 232), at least one heating gas supply line, at least one combustion-promoting gas supply (213), and a control unit (220) configured to capture the data signal provided by the monitoring unit (120) and to adjust setting parameters for combustion in the combustion chamber (210) depending on the information contained in the captured data signal.
Resumen de: WO2025185804A1
Provided is a battery module, comprising a housing (10), wherein at least one opening (11) is provided, forming a fluid connection between an inside of the housing and an outside of the housing; a plurality of battery cells (20) arranged in the housing; a tempering fluid included in the housing; a flexible plate (30) arranged on an outside surface of the housing and liquid-tightly covering the at least one opening, wherein the flexible plate is formed of a flexible material allowing for the tempering fluid to expand into a first space (S1) between the outside surface and the flexible plate, and the flexible plate exhibits, in an unstressed state, a corrugated shape.
Resumen de: WO2025185418A1
A battery and an electric device. The battery comprises a case and a bottom protective plate, wherein the bottom protective plate is connected to the case, the bottom protective plate is of a multi-layer structure, and a buffer cavity is formed between the bottom protective plate and the case and/or between two adjacent layers of the bottom protective plate. The battery structure can effectively improve the reliability of the battery.
Resumen de: WO2025185165A1
A lithium iron phosphate preparation method, a positive electrode active material, a positive electrode plate, a battery, and an electrical device. The lithium iron phosphate preparation method comprises: adding a first iron phosphate, a second iron phosphate, and a lithium source into a solvent, so as to obtain a slurry; and sintering the slurry, so as to obtain lithium iron phosphate. The specific surface area S1 of the first iron phosphate satisfies 7 m2/g ≤ S1 ≤ 9.5 m2/g, and the grain size D1 of the first iron phosphate satisfies 50 nm ≤ D1 ≤ 65 nm; the specific surface area S2 of the second iron phosphate satisfies 8.5 m2/g ≤ S2 ≤ 11.5 m2/g, and the grain size D2 of the second iron phosphate satisfies 30 nm ≤ D2 ≤ 50 nm; the specific surface area of the second iron phosphate is greater than the specific surface area of the first iron phosphate, and the grain size of the second iron phosphate is less than the grain size of the first iron phosphate. The technical solution of the present application can achieve lithium iron phosphate having high compaction density and high capacity.
Resumen de: WO2025185061A1
A battery, a battery safety system, and an electric device. The battery comprises a case, battery cells and at least one processing mechanism, wherein an exhaust channel is formed in the case, and the battery cells are accommodated in the case; the processing mechanism comprises a power source and an actuating mechanism; the power source is connected to the actuating mechanism, a treatment channel is formed in the actuating mechanism, the treatment channel is communicated with the exhaust channel, and the power source is used for driving the actuating mechanism to operate to treat fumes and gases flowing through the treatment channel.
Resumen de: WO2025185269A1
A battery cell, a battery and an electrical apparatus. The battery cell (100) comprises: an energy unit comprising an electrode assembly (20) and an electrolyte; and a housing (10) for accommodating the energy unit, wherein an insulating member (30) is provided between the energy unit and the housing (10), and the insulating member (30) is used for separating the electrolyte in the energy unit from the housing (10).
Resumen de: WO2025185065A1
Disclosed are an adhesive tape adhering device, an adhesive tape adhering method, and a battery production line. The adhesive tape adhering device is used for adhering an adhesive tape to a workpiece, and comprises: an adhesive tape adhering mechanism, which comprises adhesive tape suction heads and is used for suctioning adhesive tapes; and a shaping mechanism, which comprises shaping assemblies, wherein each shaping assembly comprises a first shaping member and a second shaping member which are spaced apart, and the spacing space between the first shaping member and the second shaping member forms a shaping channel; and each adhesive tape suction head is configured to: pass through the shaping channel, enable one end portion of two end portions of the corresponding adhesive tape to be in contact with the first shaping member, pass through the gap between the adhesive tape suction head located in the shaping channel and the first shaping member, enable the other end portion of the two end portions of the adhesive tape to be in contact with the second shaping member, and pass through the gap between the adhesive tape suction head located in the shaping channel and the second shaping member, so that the two end portions of the adhesive tape are bent, and the adhesive tape passing through the shaping channel is adhered to a workpiece.
Nº publicación: WO2025185055A1 12/09/2025
Solicitante:
CONTEMPORARY AMPEREX TECH CO LIMITED [CN]
\u5B81\u5FB7\u65F6\u4EE3\u65B0\u80FD\u6E90\u79D1\u6280\u80A1\u4EFD\u6709\u9650\u516C\u53F8
Resumen de: WO2025185055A1
The present application provides a heat exchange assembly (13), a box body (10), a battery (100), and an electrical device. The heat exchange assembly (13) comprises a first plate body (131) and a second plate body (132). The first plate body (131) has a first plate surface (1311), and the first plate body (131) comprises a first reinforcement layer member (1312). The second plate body (132) and the first plate body (131) are arranged in a stacked manner, and the second plate body (132) has a second plate surface (1321). A heat exchange flow channel (133) is provided on the first plate surface (1311) and/or the second plate surface (1321). At least part of the projection of the heat exchange flow channel (133) on a reference plane overlaps with the projection of the first reinforcement layer member (1312) on the reference plane, and the reference plane is perpendicular to the stacking direction of the first plate body (131) and the second plate body (132).