Resumen de: US2025340433A1
A method for ammonia (NH3) decomposition to hydrogen (H2) and nitrogen (N2) using a ruthenium-doped alumina-supported cobalt/nickel (Ru—CoNi/Al2O3) catalyst. The method includes introducing and passing an NH3-containing feed gas stream into a reactor to contact the NH3-containing feed gas stream with a reduced Ru—CoNi/Al2O3 catalyst at a temperature of 100 to 1000° C. thereby converting at least a portion of the NH3 to H2 and regenerating the Ru—CoNi/Al2O3 catalyst particles to form a regenerated Ru—CoNi/Al2O3 catalyst, and producing a residue gas stream leaving the reactor.
Resumen de: US2025340500A1
The invention relates to a method for producing methanol via a synthesis gas produced by combining electrolysis of a water feedstock for producing a stream comprising hydrogen, and electrolysis of carbon dioxide rich stream for producing a stream comprising CO and CO2 in which the synthesis gas has a molar ratio CO/CO2 greater than 2. The invention relates also to a method for producing a synthesis gas by once-through co-electrolysis in a SOEC unit of a feed gas stream combining CO2 and steam.
Resumen de: US2025341002A1
A direct impure water electrolysis (DIWE) approach generates green hydrogen in a modified proton-exchange membrane pure water electrolyzer (PEM-PWE), that avoids fouling, corrosion, deactivation, and side reactions normally caused by the ions in impure or saline waters. Conventional electrolyzers require ultrapure deionized (DI) water as feed because: 1) the proton-exchange membrane (PEM) and electrocatalysts are readily poisoned by the anions, e.g., chloride, and cations, e.g., sodium, calcium, and magnesium that are present in seawater or brackish water; and 2) the chloride anions readily form chlorine at the PEM-electrolyzer anode, which is toxic and corrosive. This adds substantially to the cost and complexity of the electrolyzer plant due to the water treatment plant needed for producing ultrapure DI water. The tolerance of impure water as described herein avoids reverse osmosis and deionization requirements steps which is beneficial for use in semi-arid regions with a paucity of fresh water.
Resumen de: US2025341003A1
A method for the generation of a gas mixture including carbon monoxide, carbon dioxide and optionally hydrogen for use in hydroformylation plants or in carbonylation plants, including mixing an optional steam with carbon dioxide in the desired molar ratio, feeding the resulting gas to a solid oxide electrolysis cell (SOEC) or an SOEC stack at a sufficient temperature for the cell or cell stack to operate while effecting a partial conversion of carbon dioxide to carbon monoxide and optionally of steam to hydrogen, removing some or all the remaining steam from the raw product gas stream by cooling the raw product gas stream and separating the remaining product gas from a liquid, and using the gas mixture containing CO and CO2 for liquid phase synthesis reactions utilizing carbon monoxide as one of the reactants while recycling CO2 to the SOEC or SOEC stack.
Resumen de: US2025341004A1
A device for preparing high-purity hydrogen and/or high-purity oxygen by electrolysis of water, wherein the hydrogen and/or oxygen produced has an argon content of less than 5 ppb by weight. Including, in sequence, a desalination water treatment system, a desalination water storage tank, a degasser feed water pump, a desalinated and degassed water heat exchanger, a degasser for degassing desalinated water, an electrolyzer feed water pump, and an electrolyzer. The degasser is configured to produce water that has an argon content of less than 10 ppb by weight after being degassed. The electrolyzer is an alkaline electrolyzer, and includes an electrolytic cell, and anode lye separator, a cathode lye separator, and a lye cooler. The electrolyzer also includes a lye heat exchanger and a hot lye recirculation stream. Also involved is a method of preparing high-purity hydrogen and/or oxygen by using the device.
Resumen de: US2025341001A1
An electrode configuration and system useful for performing electrolysis, including one or more pairs of non-planar electrodes each comprising a first electrode having a first base and a second electrode comprising a second base. A mount can be used to mount the first electrode and the second electrode in each of the pairs with a spacing between the first base and the second base, so that an electric current may flow through a fluid between the first base and the second base to drive an electrochemical reaction of the fluid. A surface area of the bases (the base of the first electrode and the base of the second electrode) exposed to the fluid are dimensioned to support a current density of the electric current of at least 10 A/cm2 or in a range of 10 A/cm2 and 14 A/cm2. An electrolysis system including the electrodes can be used for the electrolysis of seawater to produce hydrogen at higher rates and with reduced chlorine evolution.
Resumen de: US2025341007A1
An electrochemical cell comprises a first electrode, a second electrode, and a proton-conducting membrane between the first electrode and the second electrode. The first electrode comprises a layered perovskite having the general formula: DAB2O5+δ, wherein D consists of two or more lanthanide elements; A consists of one or more of Sr and Ba; B consists of one or more of Co, Fe, Ni, Cu, Zn, Mn, Cr, and Nd; and δ is an oxygen deficit. The second electrode comprises a cermet material including at least one metal and at least one perovskite. Related structures, apparatuses, systems, and methods are also described.
Resumen de: WO2025228738A1
The invention relates to a method for operating at least one electrochemical system (1), for example an electrolysis system for producing hydrogen, wherein software is used during operation of the electrochemical system (1), which software is at least once updated or replaced by subsequent software, and wherein the updated software or the subsequent software is tested and/or validated at least in parts. According to the invention, (a) a virtual operating environment is generated by means of a simulation, which virtual operating environment reproduces an actual operating state using real operating data, (b) the updated software or subsequent software is executed within the virtual operating environment, and (c) the updated software or subsequent software is tested and/or validated on the basis of the actual operating state in parallel with ongoing operation. The invention also relates to a computing unit (4) which is designed to carry out steps of a method according to the invention.
Resumen de: WO2025230786A1
A method of catalytic ammonia decomposition, where the method includes: flowing ammonia into a reactor charged with a supported medium entropy metal alloy (MEA) catalyst including MEA particles supported on a support, the MEA particles including a first principal metal, a second principal metal, and a third principal metal, where each of the principal metals is independently selected without repetition from the group consisting of Co, Cr, Fe, Mn, Ni, Al, Cu, Zn, Ti, Zr, Mo, V, Ru, Rh, Pd, Ag, W, Re, Ir, Pt, Au, Ce, Y, Yb, Sn, Ga, In, and Be; and catalytically decomposing the ammonia into hydrogen and nitrogen over the supported MEA catalyst in the reactor at a reaction temperature between 200 °C and 900 °C.
Resumen de: WO2025230800A1
The electrolysis device includes a plurality of plates that have a plurality of sets of aligned fluid openings. At least one of the sets of aligned fluid openings is configured for conveying high pressure hydrogen gas. At least one gasket, which has an annular shape and is made of an elastomeric material, surrounds at least one of the sets of aligned fluid openings to establish a fluid-tight seal between at least two of the plurality of plates. The at least one gasket has a generally constant cross-sectional shape around a central axis, the cross-sectional shape having a sealing surface that includes a pair of peaks that are spaced radially apart from one another and that includes a pair of elevated plateaus on opposite radial sides of the pair of peaks.
Resumen de: WO2025229398A1
There is described a hydrogen production system comprising: a gasification sub-system to produce a syngas stream from a biomass and/or refuse derived fuel feed stream; and a steam methane reformer (SMR) sub-system to produce an SMR syngas stream from a hydrocarbon feed, and to produce a low carbon hydrogen final product by integrating the syngas stream from the gasification sub-system and the SMR syngas stream.
Resumen de: WO2025231009A2
A method of catalytic ammonia decomposition is provided. The method includes: flowing ammonia into a reactor charged with a medium entropy metal alloy (MEA) catalyst including a first principal metal, a second principal metal, and a third principal metal, where each of the principal metals is independently selected without repetition from the group consisting of Co, Cr, Fe, Mn, Ni, Al, Cu, Zn, Ti, Zr, Mo, V, Ru, Rh, Pd, Ag, W, Re, Ir, Pt, Au, Ce, Y, Yb, Sn, Ga, In, and Be; and catalytically decomposing the ammonia into hydrogen and nitrogen over the MEA catalyst in the reactor at a reaction temperature between 200 °C and 900 °C.
Resumen de: DE102024112692A1
Eine Plattenanordnung (1) eines Stapels elektrochemischer Zellen (2) umfasst ein zumindest teilweise als 3D-Druck-Element ausgebildetes Plattenelement (3), in welchem mehrere Schichten (6, 7, 8) parallel zueinander angeordnet sind, die jeweils durchbrochene, zur Durchleitung eines Fluids geeignete Strukturen aufweisen, wobei die Feinheit der Durchbrechungen (17) von Schicht (6, 7, 8) zu Schicht (6, 7, 8) variiert, und wobei ein Temperatursensor (19), der an ein Kabel (20) angeschlossen ist, welches durch mehrere der genannten Schichten (6, 7, 8) verläuft, an diejenige Schicht (8) grenzt, welche die feinsten Durchbrechungen (17) aufweist.
Resumen de: EP4644586A1
The present disclosure discloses an integral catalyst with porous core-shell structure and a preparation method and an application thereof. With a transition metal as active material, a stable bifunctional catalyst capable of performing hydrogen evolution and biomass oxidation at the same time is prepared by epitaxial growth and air calcination; and, the process efficiencies of internal diffusion, external diffusion, adsorption, reaction and desorption of reactive molecules and product molecules and so on can be increased by the porous structure of the catalyst, realizing increase of the catalyst activity.
Resumen de: AU2024291100A1
The invention relates to an energy supply system (20) for coupling to a wind turbine (30) used in island mode, wherein the wind turbine (30) is configured to operate an electrolysis system (11) for producing green hydrogen using wind energy, wherein the energy supply system (20) has a solar energy source (21), comprising a photovoltaic module (22) and/or a solar thermal collector (23), which is configured to supply the electrolysis system (21), in particular an enclosure (12) and water-conducting lines of electrolysis units of the electrolysis system (11), with thermal energy in the event of the absence of wind energy. The invention also relates to a corresponding method for supplying solar energy to a wind turbine (30) used in island mode.
Resumen de: EP4644587A1
The present invention provides an improved organic-inorganic composite diaphragm for hydrogen production by alkaline water electrolysis, and a preparation method therefor. An organic polymer resistant to high temperature and concentrated alkali is selected; a polar polymer and a soluble metal salt are introduced into a diaphragm-forming solution; an aqueous alcohol solution containing ions capable of precipitating the metal salt in the diaphragm-forming solution is used as a diaphragm-forming coagulation bath; and the diaphragm and inorganic particles are generated simultaneously to prepare an organic-inorganic composite diaphragm having the inorganic particles uniformly distributed on the surface and the interior of the diaphragm. The organic-inorganic composite diaphragm has few defects, high stability and strong controllability, is used as a diaphragm for hydrogen production by alkaline water electrolysis, and demonstrates a lower electrolysis voltage and very high electrolysis efficiency.
Resumen de: WO2024141564A1
The present disclosure relates to a system for producing hydrogen from feedstock and a method thereof. The system comprises a first chamber adapted to thermally decompose the feedstock, and a second chamber adapted to receive a first portion of the gaseous stream and to receive a first portion of the solids stream to form a reactants combination. The second chamber adapted to partially react the reactants combination with steam to produce a product gas. The system further comprises a third chamber adapted to receive a second portion of the gaseous stream and adapted to receive a second portion of the solids stream to form a combustibles combination. The third chamber adapted to at least partially combust the combustibles combination to produce process heat for the first chamber and/or the second chamber. The system further comprises a controller adapted to adjust the composition of the reactants combination and of the combustibles combination.
Resumen de: CN120390829A
The present invention provides a small high-voltage electrolyzer for generating hydrogen and oxygen, the small high-voltage electrolyzer comprising: one or more cells each comprising a plurality of high-voltage electrolysis cells wherein the electrolysis cells of the respective cells are electrically connected in series; and a central electrolyte header functionally connected to each of the electrolytic cells for supplying a liquid electrolyte to the cell; a central hydrogen header connected to each of the electrolytic cells for discharging the generated hydrogen from the cells; a central oxygen header connected to each of the electrolytic cells for discharging the generated oxygen from the cells; the direct-current power supply is used for supplying power to each unit of the electrolytic bath which is connected in series; wherein the cells of the electrolytic cells connected in series are electrically connected in parallel.
Resumen de: WO2024205436A1
The object of the invention is a plasma-catalytic system for the decomposition of ammonia in gliding discharge plasma characterized in that it contains a gliding discharge reactor containing at least one catalytic bed (5) containing a metallic catalyst selected from a group including Ni and Co in an amount in a range of 2-20% by weight deposited on the Al2O3 substrate. Another object of the invention is the plasma-catalytic system of the invention for use in the decomposition of ammonia, characterized in that the mixture to be decomposed contains at least 60% ammonia and at least 40% another component selected from nitrogen and hydrogen with a flow rate in a range of 160-200 Ndm3/h.
Resumen de: JP2025165571A
【課題】熱交換器を用いた水の温度調整での調整精度を高めることが可能な水素発生装置を提供し、水素発生装置での水素ガスの製造効率を向上させる。【解決手段】水を電気分解して水素を発生させる電解装置と、電解装置を通じて水が循環する水循環経路と、水循環経路でイオンを除去するイオン交換器と、水循環経路の水温を調節する水温調節装置とを有し、水循環経路がイオン交換器通過と電解装置との間で分岐した後に合流し、水温調節装置は、電解装置が排出する水よりも低温の水をイオン交換器に供給し、該水よりも高温の水を電解装置に供給すべく、分岐点から合流点までの間に熱交換器を有し、合流点で合流する水に温度差を設けるよう構成され、合流する水の割合を調整して電解装置に供給する水の温度を調整する温度調整弁を有している水素発生装置を提供する。【選択図】 図3
Resumen de: DK202430166A1
A bipolar plate and electrodes assembly where the bipolar plate is connected to an electrode through a number of distance units is thus suggested whereby the distance units are singular, and that further, between each singular distance unit and at least one of the bipolar plate and the electrode a fusion zone is/are provided. The invention also comprises a method for generating a bipolar plate and electrodes assembly. Further an electrolyser adapted for electrolysing water into oxygen and hydrogen, is provided, whereby the electrolyser comprises a cell stack having alternatingly a diaphragm and a bipolar plate and electrode assembly and the assembly is comprised of a number of singular distance units interposed between and interconnecting bipolar plate and respective cathode and anode electrode, which distance units are adapted to be generated by way of one or more distance unit controlled generators during an assembly and fusion process.
Resumen de: EP4644584A2
The present invention is an adhesive-fixed electrolysis module comprising a single stack, the single stack having a separator, a pair of bipolar plates, a pair of gaskets, a pair of diffusion layers, a pair of electrodes, and a cell frame, wherein the bipolar plates, the gaskets, the diffusion layers, and the electrodes are sequentially arranged on the cathode and anode sides, respectively, with respect to the separator, forming a symmetrical structure, wherein the separator, the bipolar plates, the gaskets, the diffusion layers, and the electrodes are stacked in a zero-gap manner within the cell frame, and wherein the bipolar plates are adhered and fixed to the cell frame using an adhesive, thereby simplifying product assembly and reducing assembly costs compared to a single stack fixing method using welding, riveting, bolting, etc. between conventional parts.
Resumen de: AU2024307301A1
A method and arrangement of performing electrolysis by an electrolyzer includes an operational mode and a partial operational mode. During the operational mode operational power from a main power source (202) to a first (808) and second set of stacks (806). In response to detecting a power insufficient for the first and the second set of stacks (806) to perform electrolysis without impurities, the electrolyzer is set to a partial operational mode, wherein the first set of stacks (808) perform electrolysis without impurities and the second set of stacks (806) do not perform electrolysis.
Resumen de: AU2024318321A1
The invention relates to an electrolysis system (10) comprising a plurality of electrolysis devices (34, 36) which are connected to a power supply line (30), the electrolysis devices (34, 36) having a power supply unit (38, 40) and an electrolysis module (12, 14, 16, 18, 20, 22, 24, 26) coupled to the power supply unit, the power supply units of the electrolysis devices comprising a transformer (42, 44, 46, 48) and a rectifier unit (50, 52, 54, 56, 58, 60, 62, 64), the transformer having a primary winding (66, 68, 70, 72) and a secondary winding (74, 76, 78, 80, 82, 84, 86, 88) connected to an AC voltage side of the rectifier unit. According to the invention, the primary winding of the transformer of at least a first of the electrolysis devices (40) is designed to be adjustable in stages, and the rectifier unit of said electrolysis device is designed to be operated in an uncontrolled manner, the rectifier unit of the power supply unit of at least a second of the electrolysis devices being designed to be operated in a controlled manner depending on the electrical energy that can be provided by the energy source.
Nº publicación: EP4643431A1 05/11/2025
Solicitante:
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
Siemens Energy Global GmbH & Co. KG
Resumen de: AU2024301470A1
The present invention relates to an electrolysis system (100) comprising a renewable power generation plant (1), an electrolysis plant (3), a transformer station (27) and an AC bus bar (5), wherein the renewable power generation plant (1) is connected to the public electricity grid at a point of connection (POC) via the AC bus bar (5) and comprises a power plant controller (7) and a self-controlled converter (9) that is connected to the AC bus bar (5). The electrolysis plant (3) comprises an electrolysis active power controller (11) and a converter arrangement (13) that is connected to the AC bus bar (5), and wherein the electrolysis active power controller (11) is configured for controlling active power (P) of the electrolysis plant (3) at the AC bus bar (5) and the power plant controller (7) is configured for controlling reactive power (Q) at the point of connection (POC).