Resumen de: CN121172166A
本发明提供了一种自组装氮掺杂碳纳米管Pt2Mo催化剂及其制备与应用,属于催化剂技术领域。本发明通过将超细Pt2Mo合金纳米颗粒与有序N‑CNT载体相结合,在纳米尺度上实现了结构与性能的协同增强,高度有序的竹节状N‑CNT骨架提供了结构稳固、电子导电性良好的支撑框架,促进PtMo合金纳米颗粒的均匀分散,并实现高效的电子和质量传输。这种三维结构能够减少纳米颗粒团聚,保证活性位点的持续暴露,加快ORR动力学。除了载体优化外,Pt与Mo的精准合金化,形成明确的Pt2Mo结构,能够进一步提高催化活性。与表面掺杂体系不同,Pt2Mo合金纳米颗粒表现出晶格收缩和电子重构,有效调节Pt的d带中心,削弱氧中间体的吸附。这些结构和电子层面的改性共同加快了ORR过程并提升了催化剂耐久性。
Resumen de: CN121163215A
本发明公开了一种石墨烯微波膨化炉,涉及膨化炉技术领域,包括膨化炉本体,所述膨化炉本体的正面通过轴销活动连接有盖板,所述盖板的正面设置有显示器,所述显示器内部设有集成控制电路,所述膨化炉本体内壁的两侧固定安装有微波发射器,所述微波发射器的数量为多个且呈矩形均匀分布,本发明设置转盘和支撑架的设计促进了石墨烯原料的均匀受热,提高了膨化效率,温度检测器的安装实现了对膨化温度的实时监测与精准调控,确保了产品的一致性和高品质,三角块和反射层的设计增强了微波能量的利用效率,降低了能源浪费,风机和过滤盒的组合确保了膨化炉内的空气清洁与稳定,进一步提升了产品的纯净度。
Resumen de: CN121158767A
本发明涉及一种流化床制备碳纳米管的方法,包括如下步骤:步骤1:制备硅溶胶辅助的分子筛型FeCo双金属催化剂作为催化剂前驱体;步骤2:将所述催化剂前驱体置于带砂芯的竖直石英管的反应腔中,采用Ar气吹扫并将温度升高到550℃;步骤3:通入H2进行还原处理后,在Ar气环境中继续升温至600℃;步骤4:切换通入CO气体作为碳源进行反应,反应结束后在Ar保护下冷却至室温,完成碳纳米管的制备。该方法通过协同调控催化剂组分、载体性质及生长参数,实现催化活性与选择性的最优匹配。经关键工艺参数的精确优化,成功实现(6,5)手性单壁碳纳米管体相材料的可扩展宏量制备。
Resumen de: WO2025257774A1
A composite material contains: bovine serum albumin modified with neutral red; single-walled carbon nanotube inclusions; and lactate oxidase enzyme inclusions. A device for quantitatively assessing lactate content in body fluids comprises a working electrode, the surface of which is coated with the composite material according to the claimed invention. The technical result is that of increasing the upper limit of the range of detectable concentrations of lactate in body fluids to 57 mM, as well as reducing the time taken to perform a single measurement using the claimed device.
Resumen de: US2025382181A1
A method of producing carbon nanotubes is provided in which a Ni—Cu alloy catalyst on a carbon nanotube support is exposed to a light hydrocarbon stream at a temperature ranging from 500-700° C. After exposure, a carbon nanotube product is recovered comprising support carbon nanotubes and accreted nanotubes. The exposure also produces hydrogen.
Resumen de: US2025383314A1
A sensor device, comprising: a portion of graphene; and a polyaromatic molecule attached to and in electrical communication with the portion of graphene, the polyaromatic molecule comprising a leaving group configured to be displaced by an amine group.
Resumen de: AU2025271318A1
22250140_1 (GHMatters) P110542.AU.2 Abstract Disclosed is a method of forming a conductive diamond layer on a surface of a carbon fibre substrate that is used as a component of an electrode for neural stimulation and/or electrochemical sensing. The method comprises functionalising at least a portion of the surface with a functionalising agent to facilitate coating the surface with the conductive 5 diamond layer. The method also comprises providing a diamond precursor and depositing the diamond precursor over the functionalising agent to form the conductive diamond layer. The disclosure also relates to an electrode that is used as a component of an electrode for neural stimulation and/or electrochemical sensing. Figure 2f. Abstract ov b s t r a c t o v Fi gu re a Fi gu re b Fi gu re c Fi gu re d Fi gu re e Fi gu re f -H -N -0 e' (Echem reduction HSO) + Figure 2a Figure 2b Figure 2c 5 jum µm 20 µm 100 um Figure 2d Figure 2e Figure 2f ov o v ( c h e m r e d u c t i o n ) ( ( ) ) +C ( - - )
Resumen de: AU2025271175A1
Carbon nanotube (CNT) hybrid materials and methods of making such materials. A carbon nanotube (CNT) hybrid powder material includes a mesh of CNTs intimately interspersed with particles of a second material. In an example the material includes a blend that itself includes particles of a metal oxide supported catalyst and particles of a second material, and a mesh of CNTs is grown on the supported catalyst in the blend. The mesh of CNTs is effective to disperse the particles of the second material. ov o v
Resumen de: AU2024286636A1
The invention generally relates to new electron spin containing materials and in particular methods of preparing such materials in order to spatially separate electron spins from atmospheric oxygen and moisture.
Resumen de: US2025382180A1
A method of manufacturing a carbon nanotube-carbon nanofiber composite, includes preparing a spinning solution comprising an alkali metal precursor and a carbon-containing polymer; electrospinning the spinning solution to manufacture carbon-containing polymer nanofibers having the alkali metal precursor bound to a surface; heat-treating the carbon-containing polymer nanofibers to manufacture carbon nanofibers having the alkali metal precursor bound to a surface; and heat-treating the carbon nanofibers while supplying a carbon source to manufacture a carbon nanotube-carbon nanofiber composite having carbon nanotubes bound to a surface.
Resumen de: CN120019024A
The present invention relates to a carbon nanotube dispersion comprising carbon nanotubes, a first dispersant comprising a nitrogen atom, a second dispersant comprising a substituted benzopyran-based compound, and a solvent, and a method for preparing the same, wherein the substituted benzopyran-based compound contained in the second dispersant contains at least three hydroxyl groups.
Resumen de: WO2025259200A1
A material that includes a plurality of exfoliated carbon nanotubes, each exfoliated carbon nanotube having multiple walls and an outer diameter in the range of subnanometers to tens of nanometers, and having at least one end capped, for example, with half of a fullerene molecule.
Resumen de: WO2025259573A1
A method and apparatus for producing silicon-carbon composite particles, which are classified as Geldart Group C, is disclosed. Embodiments may include a transport reactor, which may include a main vessel; a transfer device configured to receive solids including at least one of carbon solids or silicon solids from main vessel; and a reaction chamber configured to: receive solids from transfer device, receive process gas, facilitate a reaction to deposit at least one of carbon or silicon on solids, transfer a reaction gas and the solids to main vessel for transfer of solids to reaction chamber by transfer device, and transfer silicon-carbon composite particles classified as Geldart Group C to main vessel or to a harvest vessel. The transfer device may transfer silicon-carbon composite particles classified as Geldart Group C from the main vessel to an output to harvest the silicon-carbon composite particles.
Resumen de: EP4663605A1
Disclosed is a nanoparticle, comprising an organic ligand represented by the following Formula (2) on the surface of a particle represented by the following Formula (1): ZnX (1) in Formula (1), X represents a Group 16 element, -Y-R<sup>21</sup>-R<sup>22</sup> (2) in Formula (2), Y is selected from OCO, OSO<sub>2</sub>, OSO, and SCS-N(R<sup>23</sup>); R<sup>21</sup> represents an organic group having 1 to 20 carbon atoms that is optionally substituted with SH or fluorine; R<sup>22</sup> represents H, F, COOH, or NH<sub>2</sub>; and R<sup>23</sup> represents a monovalent organic group having 1 to 20 carbon atoms that is optionally substituted with SH or fluorine, with the proviso that cases where R<sup>21</sup> is CH<sub>2</sub> and R<sup>22</sup> is H or NH<sub>2</sub> are excluded.
Resumen de: EP4664555A1
The present disclosure relates to a field of batteries, particular to an anode material, a preparation method thereof, and a secondary battery, wherein the anode material includes a silicon-based active material and a matrix material; the anode material includes hydrogen element, halogen element, nitrogen element, and sulfur element, wherein a mass content of the hydrogen element is mH, a mass content of the halogen element is mX, a mass content of the sulfur element is mS, and a mass content of the nitrogen element is mN, and following relational expressions are satisfied: 0.02≤mX/mH≤5.00, 0.0≤mN/mH≤20.00, 0.05≤mS/mH≤5.00. According to the technical solution, by adjusting the contents of the hydrogen element, the nitrogen element, the sulfur element and the halogen element within an appropriate range, the volume expansion of the anode material can be effectively inhibited, and capacity, initial coulombic efficiency, powder conductivity, cycle performance and rate performance of anode material are improved.
Resumen de: CN121134836A
本发明提供了一种钼铜氧化物/碳纳米管纤维负极材料的制备方法及其产品和应用,将可溶性钼源、铜源、有机醇和对苯二甲酸溶于二甲基甲酰胺溶液中;磁力搅拌1~2 h至均匀,得溶液A;将溶液A转移至反应釜中160~180℃反应8~10 h,冷却至室温,用去离子水和有机溶剂洗涤3~5次,60~80℃烘箱过夜干燥,得前驱体B;将前驱体B置于马弗炉中,以2~5℃/min的升温速率升温至600~800℃煅烧,保温2~4 h,得钼铜氧化物/碳纳米管纤维。在100 mA/g的电流密度条件下,首次放电比容量为1675 mAh/g,第二次放电比容量为1560 mAh/g,经过循环5次放电比容量为1162 mAh/g,到循环100次时放电比容量为990 mAh/g,与第5次相比:容量保持率为85.2%。
Resumen de: CN121134746A
本发明公开了一种小檗碱碳点及其制备方法和应用,该小檗碱碳点包括由小檗碱在200‑250℃下进行水热反应制得。本发明的小檗碱碳点具备小纳米尺寸,对幽门螺杆菌具备显著强于小檗碱的抗菌活性,解决了小檗碱自身存在的溶解度低、渗透性差的缺陷。
Resumen de: CN121134745A
本发明公开了一种基于果皮的碳点及其制备方法与应用,涉及纳米生物医学成像技术领域。其中基于果皮的碳点的制备方法为:将碳源和去离子水混合,得到反应液;将反应液经水热反应后,进行过滤、透析、冷冻干燥处理,得到基于果皮的碳点;碳源包括柚子皮粉末、橘子皮粉末中的至少一种,水热反应的反应温度为160~260℃,反应时间为6~30h。本申请以食用级水果废弃物柚子皮或橘子皮为碳源前驱体,通过调控水热反应的温度和时间,通过一步水热法同步实现绿色合成与碳点的表面功能化,得到荧光性能优异、生物相容性好、量子产率高、低细胞毒性的基于果皮的碳点。
Resumen de: CN121136704A
本发明涉及一种硼氮共掺杂荧光碳量子点、制备方法及其用于制备铬/铜离子传感器,属于碳量子点技术领域,包括如下步骤:取邻苯二胺盐酸盐和硼酸混合得到混合液,向混合液中加入水,超声溶解得到混合溶液;将混合溶液高温处理,得到硼氮共掺杂的碳材料溶液;将碳材料溶液用0.22 μm微孔滤膜过膜,得到硼氮共掺杂的碳量子点水溶液,再用透析袋透析 36‑48 h;将碳量子点水溶液进行冷冻干燥,得到硼氮共掺杂荧光碳量子点。本发明以单一量子点材料、一步合成工艺,实现pH调控的Cr6+/Cu2+双通道高灵敏检测,攻克了现有探针选择性受限、工艺复杂、功能单一的技术壁垒。
Resumen de: CN121136705A
本发明涉及离子检测技术领域,公开了一种绿色发射碳化聚合物点、制备方法及基于绿色发射碳化聚合物点的亚硝酸根离子检测方法。该检测方法包括:取g‑CPDs工作液,加入含不同浓度亚硝酸根离子的溶液,孵育并观察溶液荧光颜色变化,测定反应后溶液的荧光强度F,同时测定空白工作液的荧光强度F0;根据g‑CPDs反应前后的荧光强度随亚硝酸根离子浓度的变化值之间的关系建立检测亚硝酸根离子的标准曲线;取g‑CPDs工作液,加入含亚硝酸根离子的待测液,孵育并观察溶液荧光颜色变化,并测得其荧光强度;根据F0/F与亚硝酸根离子浓度的线性关系计算待测液中亚硝酸根离子的浓度。该检测方法灵敏抗干扰,适用于食品与环境水样检测。
Resumen de: CN121134748A
本发明属于纳米材料技术领域,具体涉及一种特异性检测次氯酸根的硅碳点及其制备方法与应用。硅碳点的制备方法如下:将多元羧酸和含氨基硅烷溶于水中混合反应,减压旋蒸去除水得到粘稠液体;将粘稠液体加热处理得到固体,将固体加水浸泡,旋蒸即得硅碳点。该制备方法具有绿色环保的优势,不使用有毒有害的有机溶剂,且制备过程简单,易于分离与提纯。所制备的硅碳点具备优异的水溶性、光稳定性和强荧光量子产率。同时,其对次氯酸根离子具有高选择性和灵敏度,能够在复杂的离子环境中准确识别次氯酸根离子,并且响应速度快、适用pH范围广,检测限低,可应用于水相环境中次氯酸根的快速精确测定。
Resumen de: CN121134756A
本发明提出了一种基于边缘结构调控的石墨烯纳米结构加工方法,涉及石墨烯纳米加工领域。包括:S1:制备边缘结构角度为30°的石墨烯纳米片,然后用硅探针测量其两侧台阶边缘的摩擦力,并用原子力显微镜沿两侧台阶边缘进行晶格扫描,共同验证制得的石墨烯纳米片两侧台阶边缘的晶体结构类型;S2:采用机械化学刻蚀沿和台阶边缘呈60°/90°的方向进行扫描加工,制得带有特定边缘晶体取向的石墨烯纳米结构;S3:采用机械化学刻蚀进行纳米图案加工,并通过低载荷区域扫描去除磨屑,得到具备特定边缘结构的石墨烯纳米结构;其能够解决现有技术中石墨烯纳米结构边缘难以精确控制、晶格易损伤等问题,实现具备明确边缘晶体取向的石墨烯纳米结构的可控加工。
Resumen de: CN121134719A
本发明公开了锂离子电池正极材料领域的一种磷酸锰铁锂正极材料的制备方法及正极材料,该法先将锰源、铁源与磷源溶于水,加入抗坏血酸后调节酸碱度形成均匀溶液,经高温水热反应生成前驱体。随后将该前驱体与预先制备的钇钆共掺杂锆酸镧锂离子导体进行球磨混合,并在惰性气氛下中温烧结,形成离子导体包覆的基体材料。最后将其与氮氟共掺杂石墨烯碳纳米管三维增强体复合,经球磨及低温热处理获得最终产品。该方法通过离子导体包覆与二维碳材料增强的协同作用,显著提升了材料的离子与电子传导能力,制得的正极材料具有高容量、优异循环稳定性及倍率性能。
Resumen de: CN121134751A
本发明公开了一种单壁碳纳米管收集装置,涉及纳米材料生产设备领域,包括底板、侧壁板与顶板,所述底板的顶面两侧皆设置有侧壁板,且侧壁板的顶面设置有顶板,所述顶板的顶面开设有通孔,且侧壁板之间设置有与通孔配合的展开板,所述顶板的底面位于通孔处设置有环形安装架,且环形安装架上安装有与展开板配合的激光切割头。本发明设置特殊形状的展开板,在激光切割头将筒状的单层碳纳米管切断,展开板的形状呈三角形,其可通过两面逐渐向外撑开的斜面将单层碳纳米管撑开呈平面,便于单层碳纳米管与基材的贴合,且展开板的顶面尖角插入未切割的单层碳纳米管的内部,还可防止激光切割头将碳纳米管切成两段。
Nº publicación: CN121134747A 16/12/2025
Solicitante:
中南大学
Resumen de: CN121134747A
本发明涉及一种碳点级联抗氧化纳米酶及其制备方法与应用,属于生物质纳米酶技术领域。该碳点级联抗氧化纳米酶由柑橘属果实的皮在无氧条件下经200‑400℃煅烧,分散于水中,离心得上清液,上清液经透析、过滤、干燥得碳点级联抗氧化纳米酶;所述碳点级联抗氧化纳米酶具有SOD‑CAT级联活性和羟基自由基清除能力,同时几乎不表现促氧化活性(即类过氧化物酶和类氧化酶行为)。其具有优异的抗氧化活性、广泛的热稳定性和pH稳定性、良好的生物相容性及高可重复使用性,制备方法简单,使其成为香烟过滤系统极具前景的添加剂。当应用于商业香烟滤嘴时,CDs‑cn可在香烟燃烧过程中清除高达95.82%的总ROS。