Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 390 resultados
LastUpdate Última actualización 24/08/2025 [07:02:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Resultados 175 a 200 de 390 nextPage  

HYDROGEN PRODUCTION APPARATUS USING AMMONIA

NºPublicación:  KR20250111624A 22/07/2025
Solicitante: 
주식회사에이에이알

Resumen de: KR20250111624A

본 발명은 암모니아를 이용한 수소생산장치에 관한 것으로, 제1전해질에 접촉하는 제1전극을 구비하는 제1전극모듈, 제1전극의 일 측에 배치되고 제2전해질에 접촉하는 제2전극을 구비하는 제2전극모듈, 제1전극과 상기 제2전극 사이에 배치되고 제1전해질과 제2전해질을 격리하되 이온을 통과시키는 분리막을 포함하고, 분리막은 다이아프램인 것을 특징으로 하는 바, 충분한 크기의 분리막을 저렴한 비용으로 제조하여 실제 상용화할 수 있는 수소생산장치에 관한 것이다.

SEPARATOR FOR ELECTROCHEMICAL HYDROGEN COMPRESSOR AND ELECTROCHEMICAL HYDROGEN COMPRESSOR INCLUDING SAME

NºPublicación:  KR20250111478A 22/07/2025
Solicitante: 
서울시립대학교산학협력단

Resumen de: KR20250111478A

본 발명의 실시예에 따른 전기화학적 수소 압축기용 분리판은 바디 플레이트, 바디 플레이트의 일측에 형성되며 제1 깊이를 갖는 공급 유로, 바디 플레이트의 타측에 형성되며 제2 깊이를 갖는 배출 유로, 바디 플레이트에 형성되며 공급 유로와 배출 유로를 연결하는 중간 유로 및 중간 유로와 인접한 중간 유로 사이에 배치되는 적어도 하나 이상의 리브를 포함하며, 제1 깊이와 제2 깊이는 서로 다르게 형성될 수 있다.

双极板、电解电池、电解槽堆叠体以及与之相关联的组装方法

NºPublicación:  CN120344719A 18/07/2025
Solicitante: 
约翰考克利尔氢气比利时公司
CN_120344719_PA

Resumen de: AU2023359480A1

The invention relates to a bipolar plate for an electrolytic cell, the plate comprising, on at least one of its main faces: a first zone running circumferentially; a second zone running circumferentially so as to be bordered on the outside by the first zone; a third zone running circumferentially so as to be bordered on the outside by the second zone, the various zones being arranged on the periphery of the associated main face. The invention also relates to the corresponding cell, electrolyzer cell and assembly method.

アンモニアガス予備加熱機能を有するアンモニア分解反応器

NºPublicación:  JP2025523293A 18/07/2025
Solicitante: 
福州大学
JP_2025523293_PA

Resumen de: WO2023246668A1

Disclosed in the present invention is an ammonia decomposition reactor having an ammonia preheating function. The reactor comprises a heat exchanger body and a reactor body; the heat exchanger body wraps the outer side of the reactor body; heat exchange tubes on the heat exchanger body are arranged in heat exchange housings; one end of each heat exchange tube is communicated with an ammonia heat exchange inlet, and the other end of the heat exchange tube is communicated with an ammonia heat exchange outlet; a heating agent inlet and a heating agent outlet on the heat exchanger body are respectively communicated with the heat exchange housings; catalyst tubes on the reactor body are arranged in a reaction housing; the ammonia heat exchange outlet on the heat exchanger body is communicated with an ammonia inlet on the reactor body; the ammonia inlet is communicated with an ammonia decomposition gas outlet by means of the catalyst tubes; and the ammonia decomposition gas outlet is communicated with the heating agent inlet on the heat exchanger body. According to the present invention, the reactor is compact in structure, high-temperature gas of an ammonia decomposition gas in the reactor is used as a heat medium of a heat exchanger, and heat is provided for ammonia for preheating, so that ammonia entering the reactor is in a high-temperature state, and the ammonia decomposition reaction in the reactor is more sufficient.

酸化ナノダイヤモンドを光触媒として用いる水素製造方法

NºPublicación:  JP2025523050A 17/07/2025
Solicitante: 
コミッサリアアレネルジーアトミークエオゼネルジザルタナテイヴ
JP_2025523050_A

Resumen de: CN119546546A

The invention relates to a method for producing hydrogen by photodissociation of water, comprising at least one step of contacting an aqueous solution with oxidized nanodiamonds under solar, natural or artificial illumination (or light).

OPERATION METHOD FOR DEHUMIDIFIER DEVICE, CONTROL DEVICE FOR DEHUMIDIFIER DEVICE, DEHUMIDIFIER DEVICE, AND HYDROGEN PRODUCTION FACILITY

NºPublicación:  WO2025150454A1 17/07/2025
Solicitante: 
MITSUBISHI HEAVY IND LTD [JP]
MITSUBISHI POWER LTD [JP]
\u4E09\u83F1\u91CD\u5DE5\u696D\u682A\u5F0F\u4F1A\u793E,
\u4E09\u83F1\u30D1\u30EF\u30FC\u682A\u5F0F\u4F1A\u793E
WO_2025150454_PA

Resumen de: WO2025150454A1

Provided is an operation method for a dehumidifier device for dehumidifying hydrogen gas produced by a hydrogen production device. The dehumidifier device comprises; a dehumidifier; a discharge line for discharging hydrogen gas dehumidified by the dehumidifier from the dehumidifier; a dew point measurement line connected to the discharge line; a dew point meter provided on the dew point measurement line; and an inlet valve and an outlet valve provided on opposite sides of the dew point meter on the dew point measurement line. The method includes: a stop step of stopping discharge of the hydrogen gas from the dehumidifier to the discharge line; and a maintenance step of maintaining a state in which a dew point meter installation part including at least a installation place of the dew point meter on the dew point measurement line is filled with dry gas when the discharge of the hydrogen gas from the dehumidifier to the discharge line is stopped.

DURABLE HYDROGEN EVOLUTION ELECTROCATALYST BASED ON 3D TIO2/CU MICRORODS DECORATED WITH NOBLE METAL NANOPARTICLES ON A CU SUBSTRATE

NºPublicación:  US2025230563A1 17/07/2025
Solicitante: 
FONDAZIONE ST ITALIANO DI TECNOLOGIA [IT]
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
WO_2023161892_PA

Resumen de: US2025230563A1

The present invention relates to an electrocatalyst comprising a Cu substrate coated with a 3D TiO2/Cu microrods array decorated with nanoparticles of a noble metal, preferably Ru nanoparticles, an electrochemical cell comprising said electrocatalyst and their use for hydrogen production via hydrogen evolution reaction (HER) in basic conditions. The present invention also refers to an in-situ process for the preparation of said electrocatalyst and simultaneous production of hydrogen. The present invention also refers to a process for producing hydrogen which utilizes the electrochemical cell comprising the electrocatalyst according to the invention.

DIRECT ELECTROLYSIS SEAWATER HYDROGEN PRODUCTION METHOD THAT EFFECTIVELY INHIBITS PRECIPITATION

NºPublicación:  WO2025148994A1 17/07/2025
Solicitante: 
TECHNICAL INST OF PHYSICS AND CHEMISTRY CHINESE ACADEMY OF SCIENCES [CN]
\u4E2D\u56FD\u79D1\u5B66\u9662\u7406\u5316\u6280\u672F\u7814\u7A76\u6240
WO_2025148994_PA

Resumen de: WO2025148994A1

The present invention provides a direct electrolysis seawater hydrogen production method that effectively inhibits precipitation. In the present invention, natural seawater is used as an electrolyte; an alternating current is applied to an electrode; the polarity of the electrode is periodically and alternately converted between a cathode state and an anode state by utilizing the periodic change of the voltage of the alternating current; and when the electrode is in the anode state, OH- generated by means of a hydrogen evolution reaction in the cathode state is consumed to inhibit precipitation and a catalytic activity decrease of the electrode. The present invention further provides a solution electrolysis hydrogen production method that generates a precipitate under alkaline conditions.

VANADIUM-DOPED MANGANESE COBALT SPINEL OXIDE BASED ELECTROCATALYSTS FOR GENERATING HYDROGEN

NºPublicación:  US2025230555A1 17/07/2025
Solicitante: 
KING FAHD UNIV OF PETROLEUM AND MINERALS [SA]
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Resumen de: US2025230555A1

A method of generating hydrogen including applying a potential of −0.1 volts (V) to −1.0 V to an electrochemical cell, and the electrochemical cell is at least partially submerged in an aqueous solution. Further, on the application of the potential, the aqueous solution is reduced, thereby forming hydrogen. The electrochemical cell includes an electrocatalyst and a counter electrode. The electrocatalyst includes a substrate and vanadium-doped manganese spinel oxide microspheres (MnVxCo2-xO4) particles. The value of x is ≤0.4, the MnVxCo2-xO4 particles have a spherical shape, the MnVxCo2-xO4 particles have an average diameter of less than 100 nanometers (nm), and the MnVxCo2-xO4 particles are dispersed on the substrate to form the electrocatalyst.

ELECTROLYZER CELL AND METHODS OF USING AND MANUFACTURING THE SAME

NºPublicación:  US2025230560A1 17/07/2025
Solicitante: 
VERDAGY INC [US]
Verdagy, Inc
JP_2025504078_PA

Resumen de: US2025230560A1

An electrolyzer cell comprises a first half cell comprising a housing at least partially enclosing a cell interior, a first electrode coated with a first catalyst coating, wherein the first electrode is coupled to the housing in the cell interior without welding, a second electrode coupled to the housing in the cell interior without welding, and a separator positioned between the first electrode and the second electrode, wherein a voltage is applied between the first electrode and the second electrode.

METHOD AND SYSTEM FOR OPTIMIZING AND CONTROLLING COLLABORATIVE OPERATION OF INTEGRATED ENERGY SYSTEM CONTAINING COMPLETE HYDROGEN ENERGY CHAIN

NºPublicación:  AU2024287197A1 17/07/2025
Solicitante: 
SHANDONG UNIV
SHANDONG UNIVERSITY
AU_2024287197_A1

Resumen de: AU2024287197A1

A method for optimizing and controlling collaborative operation of an integrated energy system containing a complete hydrogen energy chain, comprising: building a complete hydrogen energy chain in an integrated energy system, and modeling the built complete hydrogen energy chain considering waste heat utilization of an electrolytic cell, a hydrogen-fired turbine, and a fuel cell and economic benefits achieved by hydrogen production by-products; considering system operation flexibility, hydrogen pipeline expansion, and equipment waste heat utilization based on a traditional power system model, a refined model of the complete hydrogen energy chain, a heat-related equipment model, and performing single objective and multi-objective optimization during solving; and optimizing a connection configuration between the complete hydrogen energy chain and the integrated energy system according to a solved result, and regulating and controlling output quantities of various types of energy between the complete hydrogen energy chain and the integrated energy system. A method for optimizing and controlling collaborative operation of an integrated energy system containing a complete hydrogen energy chain, comprising: building a complete hydrogen energy chain in an integrated energy system, and modeling the built complete hydrogen energy chain considering waste heat utilization of an electrolytic cell, a hydrogen-fired turbine, and a fuel cell and economic benefits achieved by hydrogen produc

WATER ELECTROLYSIS SYSTEM AND METHOD FOR CONTROLLING SAME

NºPublicación:  AU2024210539A1 17/07/2025
Solicitante: 
HITACHI LTD
HITACHI, LTD
AU_2024210539_PA

Resumen de: AU2024210539A1

In this water electrolysis system, an alternating current (AC)-side connection end of a power converter is connected to an AC power system, at least one electrolytic stack and a series circuit configured by connecting the at least one electrolytic stack to a circuit breaker is connected to a direct current (DC)-side connection end of the power converter, before disconnecting the electrolytic stack from the series circuit, a controller reduces the power flowing to the DC-side connection end while controlling the speed at which the power converter reduces the power flowing to the DC-side connection end to a speed at which a difference from the reference value of the voltage amplitude of the AC power system is less than a predetermined value, and when the circuit breaker reaches a power sufficient to disconnect the internal DC circuit, the controller disconnects the circuit breaker connected to the DC circuit to disconnect the electrolytic stack from the series circuit.

System and method for carbon dioxide reactor control

NºPublicación:  AU2025204790A1 17/07/2025
Solicitante: 
TWELVE BENEFIT CORP
Twelve Benefit Corporation
AU_2025204790_A1

Resumen de: AU2025204790A1

SYSTEM AND METHOD FORO CARBON DIOXIDE REACTOR CONTROL A system preferably including a carbon dioxide reactor. A method for carbon dioxide reactor control, preferably including selecting carbon dioxide reactor aspects based on a desired output composition, running a carbon dioxide reactor under controlled process conditions to produce a desired output composition, and/or altering the process conditions to alter the output composition. SYSTEM AND METHOD FORO CARBON DIOXIDE REACTOR CONTROL A system preferably including a carbon dioxide reactor. A method for carbon dioxide reactor control, preferably including selecting carbon dioxide reactor aspects based on a desired output composition, running a carbon dioxide reactor under controlled process conditions to produce a desired output composition, and/or altering the process conditions to alter the output composition. un u n s y s t e m p r e f e r a b l y i n c l u d i n g a c a r b o n d i o x i d e r e a c t o r m e t h o d f o r c a r b o n d i o x i d e r e a c t o r c o n t r o l , p r e f e r a b l y i n c l u d i n g s e l e c t i n g c a r b o n d i o x i d e r e a c t o r a s p e c t s b a s e d o n a d e s i r e d o u t p u t c o m p o s i t i o n , r u n n i n g a c a r b o n d i o x i d e r e a c t o r u n d e r c o n t r o l l e d p r o c e s s c o n d i t i o n s t o p r o d u c e a d e s i r e d o u t p u t c o m p o s i t i o n , a n d o r a l t e r i n g t h e p r o c e s s c o n d i t i o n s t o a l t e r t h e

ALKALINE ELECTROLYSIS DEVICE

NºPublicación:  WO2025149217A1 17/07/2025
Solicitante: 
DEUTSCHES ZENTRUM FUER LUFT UND RAUMFAHRT E V [DE]
DEUTSCHES ZENTRUM F\u00DCR LUFT- UND RAUMFAHRT E.V
WO_2025149217_PA

Resumen de: WO2025149217A1

The present invention relates to an alkaline electrolysis device comprising: - at least one electrolysis cell having a reactor chamber, which has a hydrogen-side reactor-chamber region, containing the aqueous electrolyte, for breaking down the aqueous electrolyte into gaseous hydrogen and has an oxygen-side reactor-chamber region, containing the aqueous electrolyte, for breaking down the aqueous electrolyte into gaseous oxygen; - a hydrogen separator, which is connected to the hydrogen-side reactor-chamber region, for separating the gaseous hydrogen from the aqueous electrolyte introduced into the hydrogen separator; and - an oxygen separator, which is connected to the oxygen-side reactor-chamber region, for separating the gaseous oxygen from the aqueous electrolyte introduced into the oxygen separator; wherein the hydrogen separator comprises a first hydrogen-separator outlet for removing the aqueous electrolyte having a first hydrogen concentration, and a second hydrogen-separator outlet for removing the aqueous electrolyte having a second hydrogen concentration that is lower than the first hydrogen concentration; and wherein the first hydrogen-separator outlet and the second hydrogen-separator outlet can be or are connected to the reactor chamber.

METHOD AND REACTOR SYSTEM FOR SPLITTING WATER AND/OR CARBON DIOXIDE

NºPublicación:  US2025230040A1 17/07/2025
Solicitante: 
THE REGENTS OF THE UNIV OF COLORADO A BODY CORPORATE [US]
The Regents of the University of Colorado, a body corporate
JP_2024540926_PA

Resumen de: US2025230040A1

Methods and systems for splitting one or more of water and carbon dioxide are disclosed. Exemplary methods can operate under substantially isothermal conditions. The methods can include use of a material including two or more spinel phases in a solid solution. The solid solution can include oxygen, aluminum, and one or more transition metals.

水電解システム及び方法

NºPublicación:  JP2025523155A 17/07/2025
Solicitante: 
ヴァーネットルルド
JP_2025523155_PA

Resumen de: MX2025000634A

A water electrolysis system including a container; a plurality of microcells located inside the container; the microcells are centered around a central axis of the container; a first bracket located on a first side of the microcells; a second bracket located on a second side of the microcells; a plurality of magnets mounted on the first and the second brackets, the magnets are placed in parallel to the microcells; a liquid inside the container. The first and the second brackets are adapted to be connected to a motor. The first and the second brackets rotate during the electrolysis process. The magnets on the first bracket produce a first magnetic field and the magnets on the second bracket produce a second magnetic field; and the first and the second magnetic fields have opposite polarity.

HYDROGEN PRODUCTION AND CONVEYANCE SYSTEM AND METHOD

NºPublicación:  US2025230790A1 17/07/2025
Solicitante: 
LONE GULL HOLDINGS LTD [US]
LONE GULL HOLDINGS, LTD
US_2025179985_PA

Resumen de: US2025230790A1

A system and method by which energy from ocean waves is converted into hydrogen, and that hydrogen is used to manifest electrical and mechanical energies by an energy consuming device. A portion of the generated electrical power is communicated to water electrolyzers which produce oxygen and hydrogen from water as gases. At least a portion of the generated hydrogen gas is transferred to a transportation ship via a hose-carrying, remotely operated (or otherwise unmanned) vehicle, and subsequently transferred to an energy-consuming module or infrastructure, where a portion of the hydrogen is consumed in order to manifest a generation of electrical energy, a mechanical motion, and/or a chemical reaction.

HYDROCARBON GENERATION SYSTEM AND CARBON DIOXIDE CIRCULATION SYSTEM

NºPublicación:  US2025230108A1 17/07/2025
Solicitante: 
DENSO CORP [JP]
DENSO CORPORATION
JP_2024054767_PA

Resumen de: US2025230108A1

A hydrocarbon generation system includes a hydrocarbon generator, an electrolyzer, a water vapor supply line, and a heat exchanger. The hydrocarbon generator generates hydrocarbon through an exothermic reaction between a carbon oxide gas and hydrogen. The electrolyzer generates hydrogen from water vapor of raw materials, the generated hydrogen being supplied to the hydrocarbon generator. The water vapor supply line generates the water vapor of the raw materials by evaporating liquid water of the raw materials and supplies the generated water vapor to the electrolyzer. The heat exchanger uses heat of a reaction generated in the hydrocarbon generator to evaporate the liquid water of the raw materials in the water vapor supply line via heat transfer oil.

BIPOLAR PLATE AND ELECTROCHEMICAL CELL

NºPublicación:  EP4584835A2 16/07/2025
Solicitante: 
SCHAEFFLER TECHNOLOGIES AG [DE]
Schaeffler Technologies AG & Co. KG
KR_20250037774_PA

Resumen de: CN119604997A

The invention relates to: a bipolar plate (1); and an electrochemical cell (12) comprising a plurality of such bipolar plates (1, 1 '). The bipolar plate (1) comprises a first half plate (1a) and a second half plate (1b) which are fixedly connected with each other, the bipolar plate (1) is provided with a plurality of fluid channel openings (2), and the fluid channel openings comprise fluid inlet openings (2a, 2c and 2e) and fluid outlet openings (2b, 2d and 2f); on both sides of the bipolar plate (1) there are a first distributor field (3) for distributing the fluid, an active field (4) and a second distributor field (5) for distributing the fluid. At least one seal (6, 6 ') is also present on each side of the bipolar plate (1), the seals (6, 6') being positioned one above the other in at least one transition region (7) between the fluid channel opening (2) and the adjacent distributor field (3, 5) as seen perpendicularly to the plane of expansion of the bipolar plate (1) and being reinforced by embossing structures (9a, 9b).

HYDROGEN PRODUCTION SYSTEM AND METHOD OF USING SAME

NºPublicación:  EP4584214A1 16/07/2025
Solicitante: 
WHOLEWORLD LLC [US]
WHOLEWORLD, LLC
US_2024395434_PA

Resumen de: US2024395434A1

A reactor block to extract hydrogen from water includes a first opening configured to receive gasified water, a second opening, and a reactor plate. A channel is formed in the reactor plate and disposed in a fluid path between the first opening and the second opening and a radioactive coating is applied to the channel. The second opening is configured to eject hydrogen generated by radiolysis of at least a portion of the gasified water received at the first opening and passed through the channel to the second opening.

空気から二酸化炭素を回収して二酸化炭素を燃料及び化学物質へと直接変換するための方法

NºPublicación:  JP2025106343A 15/07/2025
Solicitante: 
インフィニウムテクノロジー,エルエルシー
JP_2025106343_PA

Resumen de: US2023373882A1

The invention relates to a process, catalysts, materials for conversion of renewable electricity, air, and water to low or zero carbon fuels and chemicals by the direct capture of carbon dioxide from the atmosphere and the conversion of the carbon dioxide to fuels and chemicals using hydrogen produced by the electrolysis of water.

Elektrolyseur zur alkalischen Wasserstoffelektrolyse

NºPublicación:  AT527859A1 15/07/2025
Solicitante: 
ANDRITZ AG [AT]
Andritz AG
AT_527859_PA

Resumen de: AT527859A1

Elektrolyseur zur alkalischen Wasserstoffelektrolyse, umfassend eine Gleichspannungsquelle, insbesondere einen Gleichrichter (1) mit einem elektrischen Plus-Pol (2) und einem elektrischen Minus-Pol (3), sowie Medienzuleitungen (4) für ein Elektrolysemedium und Medienableitungen (5) für Produktmedien, wobei zwischen dem Plus-Pol (2) und dem Minus-Pol (3) mehrere, über elektrische Verbindungsleitungen (9) in Serie geschaltete Elektrolyseblöcke (6) angeschlossen sind, wobei die Elektrolyseblöcke (6) jeweils eine Vielzahl elektrisch in Serie geschalteter und bündig mechanisch verspannter Elektrolysezellen (7) aufweisen, wobei die Medienzuleitungen (4) und die Medienableitungen (5) jeweils seriell durch die Elektrolyseblöcke (6) verlaufen und sich innerhalb jedes einzelnen Elektrolyseblocks (6) auf individuelle Zellzuleitungen (4‘, 4‘‘) und individuelle Zellableitungen (5‘, 5‘‘) der Elektrolysezellen (7) verteilen.

水素を生成する方法

NºPublicación:  JP2025106288A 15/07/2025
Solicitante: 
ユティリティグローバル,インコーポレイテッド
JP_2025106288_PA

Resumen de: JP2025106288A

【課題】水素を生成する方法を提供する。【解決手段】水素を生成する方法は、燃料を含む第1のストリームを装置に導入すること、水を含む第2のストリームを装置に導入すること、第2のストリーム中の水を水素に還元すること、および水素を装置から抽出することを含む。第1のストリームおよび第2のストリームは、装置内で互いに接触しない。【選択図】図6B

用于将元件堆叠体连结在一起的方法

NºPublicación:  CN120303448A 11/07/2025
Solicitante: 
约翰考克利尔氢气比利时公司
CN_120303448_PA

Resumen de: AU2023359478A1

The invention relates to a method for joining a stack of elements together, the method comprising the steps of: individually joining subassemblies of the elements together; joining the subassemblies together by arranging a joint between each subassembly to form the stack of elements; applying consecutive phases of heating and cooling to the stack of elements while applying at least one clamping action to the stack of elements between two different phases of heating and cooling.

一种电解制氢系统及其控制方法

Nº publicación: CN120291155A 11/07/2025

Solicitante:

北京众和青源科技有限公司

CN_120291155_PA

Resumen de: CN118461072A

The invention discloses an electrolytic hydrogen production system and a control method thereof. The electrolytic hydrogen production system comprises a plurality of electrolytic cells, the control method comprises the following steps: acquiring a state code of each electrolytic cell; the state code reflects the state information of the electrolytic cell; and controlling the hydrogen production capacity of each electrolytic cell according to each state code. According to the technical scheme, intelligent control over the electrolytic hydrogen production system is achieved, the hydrogen production capacity of all the electrolytic cells is reasonably distributed, and therefore the electrolytic hydrogen production system is in the optimal operation state all the time, and the stability of the electrolytic hydrogen production system and the electrolytic hydrogen production efficiency can be improved.

traducir