Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 390 resultados
LastUpdate Última actualización 24/08/2025 [07:02:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Resultados 150 a 175 de 390 nextPage  

Alkaline Electrolyzer with Cooled Bipolar Electrode

NºPublicación:  US2025236972A1 24/07/2025
Solicitante: 
STIESDAL HYDROGEN AS [DK]
Stiesdal Hydrogen A/S
KR_20250088530_PA

Resumen de: US2025236972A1

Electrolyzer for production of hydrogen gas and comprising a stack of bipolar electrodes sandwiching ion-transporting membranes between each two of the bipolar electrodes. Each bipolar electrode comprises two metal plates welded together back-to-back forming a coolant compartment in between and having a respective anode surface and an opposite cathode surface, each of which is abutting one of the membranes. The plates are embossed with a major vertical channel and minor channels in a herringbone pattern for transport of oxygen and hydrogen gases. The embossed herringbone pattern is provided on both sides of the metal plates so as to also provide coolant channels in a herringbone pattern inside the coolant compartment.

METHODS, DEVICES, AND SYSTEMS FOR MITIGATING HYDROGEN CROSSOVER WITHIN AN ELECTROCHEMICAL CELL

NºPublicación:  US2025236964A1 24/07/2025
Solicitante: 
ELECTRIC HYDROGEN CO [US]
ELECTRIC HYDROGEN CO
AU_2023232652_PA

Resumen de: US2025236964A1

Electrochemical cells having recombination layers are disclosed herein. One example of such a cell includes a membrane configured to be positioned between an anode flow field and a cathode flow field of the electrochemical cell. The cell further includes a recombination layer configured to be positioned between the anode flow field and at least a portion of the membrane. The recombination layer includes a catalyst configured to assist in a formation of water from hydrogen gas and oxygen gas produced within the electrochemical cell, therein mitigating any hydrogen gas crossover from a cathode side to an anode side of the electrochemical cell.

GREEN HYDROGEN PRODUCTION THROUGH ELECTROLYSIS OF HIGH-PRESSURE AND HIGH-TEMPERATURE UPSTREAM BOILER BLOWDOWN WASTE WATER STREAM

NºPublicación:  US2025236960A1 24/07/2025
Solicitante: 
SAUDI ARABIAN OIL COMPANY [SA]
SAUDI ARABIAN OIL COMPANY

Resumen de: US2025236960A1

Described is a system and method for green hydrogen production via electrolysis. The system includes a steam boiler unit configured to produce a discharged waste water stream, an electrolysis unit configured to produce hydrogen and oxygen from the discharged waste water stream; and a hydrogen storage unit for storing a portion of the hydrogen produced by the electrolysis unit as a product.

INTEGRATED HYDROGEN PRODUCTION METHOD AND SYSTEM

NºPublicación:  US2025236962A1 24/07/2025
Solicitante: 
UTILITY GLOBAL INC [US]
Utility Global, Inc
JP_2024526651_PA

Resumen de: US2025236962A1

Herein discussed is a hydrogen production system comprising a first reactor zone and a second reactor zone, wherein both reactor zones comprise an ionically conducting membrane, wherein the first zone is capable of reforming a hydrocarbon electrochemically and the second zone is capable of performing water gas shift reactions electrochemically, wherein the electrochemical reforming reactions involve the exchange of an ion through the membrane to oxidize the hydrocarbon and wherein electrochemical water gas shift reactions involve the exchange of an ion through the membrane and include forward water gas shift reactions, or reverse water gas shift reactions, or both. In an embodiment, the membrane is mixed conducting. In an embodiment, the membrane comprises an electronically conducting phase and an ionically conducting phase.

NI-BASED POROUS ELECTRODE FOR WATER ELECTROLYSIS AND THE PREPARATION METHOD THEREOF

NºPublicación:  US2025236969A1 24/07/2025
Solicitante: 
FUND CIDETEC [ES]
UNIV AUT\u00D2NOMA DE BARCELONA [ES]
INST CATALANA DE RECERCA I ESTUDIS AVANCATS [ES]
FUNDACI\u00D3N CIDETEC,
UNIVERSITAT AUT\u00D2NOMA DE BARCELONA,
INSTITUCI\u00D3 CATALANA DE RECERCA I ESTUDIS AVAN\u00C7ATS
EP_4575040_A1

Resumen de: US2025236969A1

A Ni-based porous electrode for water electrolysis including (a) a macroporous substrate having a specific thickness, porosity level, and a pore size; (b) a first layer of a metal or a metal alloy as defined herein covering the macroporous substrate; and (c) a second layer of Ni, a Ni—X alloy or a Ni—X—Y alloy covering the first layer. The Ni-based porous electrode is free from Pt-group metals and rare-earths. A process for the manufacturing of the Ni-based porous electrode. The use of the Ni-based porous electrode to catalyze the hydrogen evolution reaction (HER). A water electrolyzer comprising the Ni-based porous electrode.

LOW IMPEDANCE ELECTRICAL CONNECTIONS FOR ELECTROCHEMICAL CELLS

NºPublicación:  US2025236967A1 24/07/2025
Solicitante: 
ELECTRIC HYDROGEN CO [US]
ELECTRIC HYDROGEN CO
JP_2025501907_PA

Resumen de: US2025236967A1

A membrane in an electrochemical cell may be electrically and/or mechanically coupled to a flow-field plate using a conductive adhesive. Various types of adhesives with conductive particles may be used. The adhesive may be selected such that in the fluid phase it is able to diffuse through one or more porous layers of the electrochemical cell, such as a liquid/gas diffusion layer. In some cases, the use of conductive adhesive may increase the level of inter-component electrical contact that may be achieved for a given level of compressive force applied between the components in the electrochemical cell.

PROCESS OF HYDROGEN RECYCLING IN REFINERY

NºPublicación:  WO2025153632A1 24/07/2025
Solicitante: 
TOTALENERGIES ONETECH [FR]
TOTALENERGIES ONETECH
WO_2025153632_PA

Resumen de: WO2025153632A1

The disclosure concerns a hydroprocessing of a hydrocarbon feedstock (1) in which the acid gas stream with hydrogen sulphide (11) that is generated is cracked to generate a stream (13) comprising hydrogen and elemental sulphur. The disclosure relates also to an installation for removing one or more organic sulphur compounds from a hydrocarbon feedstock (1).

HYDROGEN GENERATOR FOR FUEL SAVING AND EXHAUST EMISSION REDUCTION AND VEHICLE INCLUDING THE SAME

NºPublicación:  KR20250112431A 24/07/2025
Solicitante: 
황용운함상호황철수황철욱

Resumen de: KR20250112431A

본 발명의 실시예에 따르면, 배터리로부터 공급되는 전력을 활용하여 물탱크에 저장되었던 물에 대한 전기 분해를 수행하는 전기 분해기; 및 상기 전기 분해기에 의해 생성된 수소를 운송 수단의 엔진 연소실과 연결되는 흡기 통로에 공급하는 수소 공급 장치를 포함하는, 운송 수단의 수소 발생 시스템이 제공된다.

Nuclear power plant hydrogen production system and method

NºPublicación:  KR20250112723A 24/07/2025
Solicitante: 
한국수력원자력주식회사
KR_20240155611_PA

Resumen de: KR20250112723A

원자력 발전소 수소생산 시스템 및 방법을 제공한다. 원자력 발전소의 수소생산 시스템으로서, 전력그리드; 증기를 생성하는 증기발생부; 상기 증기를 기반으로 동작하는 터빈; 상기 전력그리드와 연동되는 스위치야드; 상기 증기를 수요처로 이송하는 이송배관; 상기 터빈의 동작을 기반으로 동작하는 발전기; 상기 증기로부터 추기된 추기 증기를 수요처로 이송하는 추기배관; 상기 스위치야드로부터 공급되는 전기를 통해, 수소를 생산하는 저온 수전해부; 및 상기 스위치야드로부터 공급되는 전기와, 상기 추기 증기를 기반으로, 수소를 생산하는 고온 수전해부를 포함하고, 상기 수소생산 시스템은, 기 설정된 조건에 따라, 상기 저온 수전해부만 운전되는 제1 운전과, 상기 고온 수전해부만 운전되는 제2 운전과, 상기 저온 수전해부와 상기 고온 수전해부가 복합 운전되는 제3 운전이 각각 수행 가능하다.

HYDROGEN GENERATION SYSTEM

NºPublicación:  US2025236978A1 24/07/2025
Solicitante: 
HYAXIOM INC [US]
HYAXIOM, INC
CN_117795128_PA

Resumen de: US2025236978A1

A hydrogen generation system includes a plurality of cell stack assemblies, each including a plurality of cells. The cell stack assemblies are electrically connected in series. The cell stack assemblies each receive water and electricity and generate hydrogen as a result of an electrochemical reaction within the cells. The hydrogen is intended for use outside of the system and may be stored or transported to another location. A plurality of conduits carry water into and water, oxygen and hydrogen away from the cell stack assemblies. The conduits each include a dielectric section near the respective cell stack assembly to reduce or eliminate shunt currents between the cell stack assemblies. The dielectric sections may also serve to electrically isolate the cell stack assemblies from grounded portions of the system, such as a supporting frame.

ENVIRONMENTAL CONTROL SYSTEM UTILIZING AN ANION CONDUCTING MEMBRANE

NºPublicación:  US2025235819A1 24/07/2025
Solicitante: 
USA FORTESCUE IP INC [US]
USA Fortescue IP, Inc
CN_118634625_PA

Resumen de: US2025235819A1

An environmental control system employs an electrolysis cell utilizing an anion conducting membrane. A power supply is coupled across the anode and cathode of the electrolysis cell to drive reactions to reduce oxygen and/or carbon dioxide in an output gas flow. A cathode enclosure may be coupled with the electrolysis cell and provide an input gas flow and receive the output gas flow. A first electrolysis cell may be utilized to reduce the carbon dioxide concentration in an output flow that is directed to a second electrolysis cell, that reduces the concentration of oxygen. The oxygen and/or carbon dioxide may be vented from the system and used for an auxiliary purpose. An electrolyte solution may be configured in a loop from a reservoir to the anode, to provide a flow of electrolyte solution to the anode. Moisture from the cathode may be collected and provided to the anode.

MITIGATING CHLORIDE ION OXIDATION DURING SALINE WATER ELECTROLYSIS FOR HYDROGEN PRODUCTION AND CARBON DIOXIDE MINERALIZATION

NºPublicación:  AU2024216224A1 24/07/2025
Solicitante: 
THE REGENTS OF THE UNIV OF CALIFORNIA
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
AU_2024216224_A1

Resumen de: WO2024163636A1

The present disclosure relates to methods of sequestering CO2 comprising a first cathodic chamber, performing a first alkaline process, a first anodic chamber, performing a first acidic process, and dechlorinating a solution by contacting the solution with a dechlorinating agent. Also provided herein are systems comprising a first cathodic chamber and a first anodic chamber.

METHOD OF PREPARING NIMO-MOO3-X POROUS NANORODS AND CATHODE CATALYST FOR WATER ELECTROLYSIS COMPRISING PREPARED NIMO-MOO3-X POROUS NANORODS

NºPublicación:  EP4588566A1 23/07/2025
Solicitante: 
HANWHA SOLUTIONS CORP [KR]
YONSEI UNIV UNIV INDUSTRY FOUNDATION UIF [KR]
Hanwha Solutions Corporation,
Yonsei University, University-Industry Foundation(UIF)
EP_4588566_PA

Resumen de: EP4588566A1

The present disclosure relates to a method of preparing a NiMo-MoO<sub>3-x</sub> porous nanorod catalyst based on a metal-organic framework and a non-precious metal alloy catalyst prepared thereby. The method of preparing a non-precious metal alloy catalyst according to the present disclosure can prepare an alloy catalyst that combine alloys and oxides and form nanorods having porosity and high surface area, and possess excellent HER performance close to that of commercial platinum catalysts.

ELECTRODE AND ALKALI WATER ELECTROLYTIC DEVICE INCLUDING SAME

NºPublicación:  EP4589053A1 23/07/2025
Solicitante: 
SUMITOMO ELECTRIC INDUSTRIES [JP]
SUMITOMO ELECTRIC INDUSTRIES, LTD
EP_4589053_PA

Resumen de: EP4589053A1

An electrode, including: a substrate that has a surface composed of at least one of nickel, nickel oxide, and nickel hydroxide; and scale-like protruding parts provided on the surface of the substrate.

BLOCK COPOLYMER, POLYMER ELECTROLYTE MATERIAL USING SAME, POLYMER ELECTROLYTE MOLDED ARTICLE, POLYMER ELECTROLYTE MEMBRANE, CATALYST-COATED ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE COMPOSITE BODY, SOLID POLYMER FUEL CELL, AND WATER ELECTROLYTIC HYDROGEN GENERATOR

NºPublicación:  EP4588957A1 23/07/2025
Solicitante: 
TORAY INDUSTRIES [JP]
Toray Industries, Inc
EP_4588957_A1

Resumen de: EP4588957A1

A block copolymer including one or more segments containing an ionic group (hereinafter referred to as an "ionic segment(s)") and one or more segments containing no ionic group (hereinafter referred to as a "nonionic segment(s)"), wherein the ionic segment has an aromatic hydrocarbon polymer having a number-average molecular weight of more than 40,000 and 50,000 or less, and wherein the block copolymer satisfies the relation of: Mn3 / (Mn1 + Mn2) > 1.5, wherein Mn1 represents the number-average molecular weight of the ionic segment, Mn2 represents the number-average molecular weight of the nonionic segment, and Mn3 represents the number-average molecular weight of the block copolymer. Provided is a block copolymer and a polymer electrolyte material produced using the same, wherein the block copolymer has excellent proton conductivity even under low-humidity conditions, has excellent mechanical strength and physical durability, and has an excellent in-process capability.

COMPOSITE BODY, CATALYTIC INK, AND METHOD FOR MANUFACTURING COMPOSITE BODY

NºPublicación:  EP4588561A1 23/07/2025
Solicitante: 
DAINIPPON INK & CHEMICALS [JP]
DIC Corporation
EP_4588561_PA

Resumen de: EP4588561A1

Provided is a composite including molybdenum disulfide and molybdenum trioxide, in which the molybdenum disulfide includes a 3R crystal structure, and the percentage content of a molybdenum trioxide-equivalent value (B) calculated from the molybdenum content determined by XRF analysis of the composite relative to the total mass of the composite is 5 to 90 mass%. Also provided is a catalytic ink including the composite and a solvent. Also provided is a method for producing the composite, including a calcination step of heating molybdenum trioxide in the presence of a sulfur source at a temperature of 400°C or less.

Hydrogen-rich blast furnace ironmaking system based on mass-energy conversion, and production control method therefor

NºPublicación:  GB2637436A 23/07/2025
Solicitante: 
CHANGLI COUNTY XINGGUO PREC MACHINE PARTS CO LTD [CN]
UNIV SHANGHAI [CN]
Changli County Xingguo Precision Machine Parts Co., Ltd,
Shanghai University
GB_2637436_PA

Resumen de: GB2637436A

Provided are a battery management system and method, and a related device. Battery units are controlled to be connected or disconnected in a power supply circuit by using collected operation parameters of the battery units, so that the safety in a battery operation process is improved. The battery management system comprises N first nodes, a second node, and M control switches. The first node is used for generating a first signal and sending the first signal to the second node, wherein the first signal comprises operation parameters of the battery unit corresponding to the first node in the power supply circuit. The second node is used for generating a second signal on the basis of the N first signals from the N first nodes and sending the second signal to the control switches. The control switch is used for controlling, on the basis of the second signal, the battery unit corresponding to the control switch to be connected or disconnected in the power supply circuit.

ELECTROLYSIS SYSTEM AND METHOD FOR OPERATING AN ELECTROLYSIS SYSTEM OF THIS TYPE

NºPublicación:  EP4587615A1 23/07/2025
Solicitante: 
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
Siemens Energy Global GmbH & Co. KG
CN_120283084_PA

Resumen de: AU2023405114A1

The invention relates to an electrolysis system (1) comprising an electrolyser (3) for producing hydrogen (H

HYDROGEN PRODUCTION APPARATUS, ELECTRICAL ENERGY SUPPLY ARRANGEMENT AND METHOD FOR OPERATING A HYDROGEN PRODUCTION APPARATUS

NºPublicación:  EP4587614A1 23/07/2025
Solicitante: 
SIEMENS GAMESA RENEWABLE ENERGY AS [DK]
Siemens Gamesa Renewable Energy A/S
WO_2024114990_PA

Resumen de: WO2024114990A1

A hydrogen production apparatus (11) for an intermittent power source (2) and/or an electrical grid, comprising: a hydrogen production unit (19) for producing hydrogen gas (12), a first compressor unit (21) for compressing the produced hydrogen gas, a tank (25) for storing the gas compressed by the first compressor unit (21), the tank comprising a first and a second outlet (28, 29), a second compressor unit (30) fluidly connected to the second outlet of the tank (25) for compressing hydrogen gas supplied from the tank, the second compressor unit comprising an outlet (33), and a dispensing unit (34) fluidly connected to both the first outlet of the tank and the outlet of the second compressor unit for dispensing gas from the hydrogen production apparatus. By storing hydrogen gas in the tank, hydrogen gas can be dispensed from the hydrogen production apparatus even in times of low hydrogen production such as low wind speeds.

ELECTROCHEMICAL CELL

NºPublicación:  EP4588115A1 23/07/2025
Solicitante: 
CERES IP CO LTD [GB]
Ceres Intellectual Property Company Limited
KR_20250069873_PA

Resumen de: CN119908039A

Disclosed is an electrochemical cell having: a porous metal support; at least one layer of a first electrode on the porous metal support; a first electron blocking electrolyte layer of rare earth doped zirconia on the at least one layer of the first electrode; and a second bulk electrolyte layer of rare earth doped cerium oxide on the first electron blocking electrolyte layer. The first electron blocking electrolyte layer of rare earth doped zirconia may have a thickness of 0.5 mu m or more, and the second bulk electrolyte layer of rare earth doped ceria may have a thickness of 4 mu m or more.

ELECTRODE AND ELECTROCHEMICAL CELL

NºPublicación:  EP4588114A2 23/07/2025
Solicitante: 
CERES IP CO LTD [GB]
Ceres Intellectual Property Company Limited
KR_20250068641_PA

Resumen de: AU2023342927A1

An electrochemical cell is disclosed having a porous metal support, a gas transport layer on the porous metal support, and an electrode layer on the gas transport layer. The gas transport layer is electrically conductive and has an open pore structure comprising a pore volume fraction of 20% by volume or higher and wherein the electrode layer has a pore volume fraction lower than the pore volume fraction of the gas transport layer. Also disclosed is a stack of such electrochemical cells and a method of producing such an electrochemical cell.

ELECTROLYSIS CELL WITH ARCHED SUPPORT MEMBERS

NºPublicación:  EP4587617A2 23/07/2025
Solicitante: 
THYSSENKRUPP NUCERA AG & CO KGAA [DE]
thyssenkrupp nucera AG & Co. KGaA
KR_20250058034_PA

Resumen de: CN119895081A

An electrolytic cell (1) for the electrolysis of chlor-alkali or alkaline water, comprising: two cell elements (2, 3), each cell element (2, 3) defining an electrode chamber (4, 5) by providing a rear wall (6) and side walls (7) of the electrode chamber (4, 5); electrodes (8, 9) respectively housed in each of the electrode chambers (4, 5); a sheet-like diaphragm (10) that extends in the height direction (H) and the width direction (W) of the electrolytic cell (1), is provided in a joint (11) between the two electrolytic cell elements (2, 3), and forms a partition wall (12) between the electrode chambers (4, 5); a plurality of support members (13) for supporting at least one electrode (8, 9) on a respective rear wall (6); wherein each support member (13) comprises: two support parts standing on the rear wall (6) and extending in the height direction (H) of the electrolytic cell (1); two feet (16, 17) connected to the respective supports (14, 15) at an angle and in planar contact with the rear wall (6); wherein the support portions of the support members (13) are connected to each other by means of an arch-shaped portion (18) bent outward toward the electrode (8) to be supported, and form an elastic bearing surface (19) for supporting the electrode (8); when the arch (18) deflects inwards, the bearing surface (19) increases.

PRODUCTION OF HYDROGEN AND SOLID LITHIUM HYDROXIDE

NºPublicación:  EP4587388A1 23/07/2025
Solicitante: 
EVONIK OPERATIONS GMBH [DE]
Evonik Operations GmbH
MX_2025002822_A

Resumen de: MX2025002822A

The problem addressed by the present invention is that of specifying a process for producing lithium hydroxide which is very energy efficient. The process shall especially operate without consumption of thermal energy. The process shall be able to handle, as raw material, Li-containing waters generated during digestion of spent lithium-ion batteries. The LiOH produced by the process shall have a high purity sufficient for direct manufacture of new LIB. The process shall achieve a high throughput and have small footprint in order that it can be combined with existing processes for workup of used LIB/for production of new LIB to form a closed, continuous production loop. The process according to the invention is an electrolytic membrane process operating with a LiSICon membrane. It is a special aspect of the process that the electrolysis is operated up to the precipitation limit of the lithium hydroxide.

HYDROGEN PRODUCTION APPARATUS

NºPublicación:  KR20250111615A 22/07/2025
Solicitante: 
주식회사에이에이알

Resumen de: KR20250111615A

본 발명은 수소생산장치에 관한 것으로, 제1전해질에 접촉하는 제1전극을 구비하는 제1전극모듈, 제1전극의 일 측에 배치되고 제2전해질에 접촉하는 제2전극을 구비하는 제2전극모듈, 제1전극과 제2전극 사이에 배치되고 제1전해질과 제2전해질을 격리하되 이온을 통과시키는 분리막을 포함한다. 제1전극모듈 또는 제2전극모듈 중 적어도 어느 하나는, 전극모듈 바디, 전극모듈 바디의 일 측에 형성되고 전극이 배치되는 전극홀을 포함하고, 제1전극은 전극모듈 바디에 분리 가능하게 결합되는 바, 전극의 손쉽게 교체할 수 있는 수소생산장치에 관한 것이다.

用于将二氧化碳和电力转换成燃料和化学品的方法

Nº publicación: CN120349821A 22/07/2025

Solicitante:

英飞纳姆科技有限责任公司

CN_120349821_PA

Resumen de: NZ793935A

The present invention describes a processes, systems, and catalysts for the conversion of carbon dioxide and water and electricity into low carbon or zero carbon high quality fuels and chemicals. In one aspect, the present invention provides an integrated process for the conversion of a feed stream comprising carbon dioxide to a product stream comprising hydrocarbons between 5 and 24 carbon atoms in length.

traducir