Resumen de: WO2025250426A1
Olefinic products may be produced from various sources. For example, methods of production of olefinic products from carbon dioxide may include: performing an electrolysis reaction of water to form hydrogen and oxygen; providing at least a portion of the hydrogen and carbon dioxide to a methanation unit; reacting the hydrogen and the carbon dioxide via a methanation reaction in the methanation unit to produce methane and water; providing at least a portion of the methane and at least a portion of the oxygen to an oxidative coupling unit; and reacting the methane and the oxygen via an oxidative coupling reaction in the oxidative coupling unit to produce an olefinic product, water, and optionally, additional carbon dioxide.
Resumen de: WO2025248075A1
Embodiments for an apparatus for producing hydrogen peroxide are provided. The apparatus includes a heat exchanger configured to remove heat from deionized water prior to passing the deionized water through the anode passage of one or more cells. The apparatus is also configured to oxidize the deionized water in the anode passage of the one or more cells. The apparatus also includes a controller configured to control the heat exchanger and a first one or more temperature sensors electrically coupled to the controller. The first one or more temperature sensors are configured to provide a first temperature reading based on a temperature of the one or more cells, wherein the controller is configured to control the heat exchanger to maintain the first temperature reading at or below a first temperature threshold.
Resumen de: WO2025248230A1
A membrane-electrode assembly for a water electrolyser is provided. The membrane-electrode assembly comprises a polymer electrolyte membrane with a first major surface and a second major surface, and an anode component in contact with the first major surface of the polymer electrolyte membrane. The anode component comprises (i) a porous framework of polymer fibres at least partially coated with a metal-containing thin film; and (ii) an oxygen evolution reaction (OER) catalyst supported on the porous framework of polymer fibres.
Resumen de: WO2025247962A1
The present invention relates to a water-efficient method of storing hydrogen using a bicarbonate/formate-based aqueous reaction system, wherein the method comprises: (A) reducing aqueous bicarbonate using hydrogen to form formate and water, (B) at least partially separating water from the aqueous reaction system to provide water and concentrated salt components comprising formate, and (C) using the water provided in step (B) to form hydrogen for use in step (A) and/or to dissolve concentrated salt components comprising bicarbonate to provide aqueous bicarbonate for use in step (A).
Resumen de: WO2025247582A1
The invention relates to a method and a facility (100) for producing a hydrogen-containing product, wherein ammonia (1) is subjected to a pretreatment (10) so as to obtain an ammonia feed (2), and the ammonia feed (2) is converted into a cracked gas (3), containing ammonia, hydrogen, and nitrogen, in a heated ammonia cracker (20), a sulfur-free fuel gas being burned so as to form a water-containing flue gas (4a) in order to heat the ammonia cracker (20). The invention is characterized in that at least part of the water-containing flue gas is cooled to below the dew point during the pretreatment (10) of ammonia, condensed water and heated ammonia being obtained.
Resumen de: WO2024114488A1
The present invention belongs to the field of water electrolysis for hydrogen production. Disclosed are a PEM water electrolysis bipolar plate and a manufacturing method. The present invention uses a stainless steel plate as a substrate. The substrate is provided with through hole structures which have the same structure as flow channel ridges and positions of which match positions of the flow channel ridges. The upper surface and the lower surface of the substrate are both provided with a titanium layer, and the titanium layers fill the through hole structures so as to enable the upper titanium layer and the lower titanium layer to be connected. A spherical dehydrogenated titanium powder layer and a functional coating are successively provided on the surface of each of the titanium layers. The functional coatings form the flow channel ridges, flow disturbing pillars and a hydrogen-oxygen frame of the bipolar plate. The pore diameter of the spherical dehydrogenated titanium powder layers is 100 nm to 10 μm; and the titanium layers, the spherical dehydrogenated titanium powder layers and the functional coatings all contain titanium powders. The present invention can improve the conductivity of the bipolar plate while using a low-cost stainless steel plate, thus improving the overall properties of the water electrolysis bipolar plate.
Resumen de: EP4657576A1
Problem To provide a catalyst-loaded carbon having a high initial activity and excellent durability. Solution A catalyst-loaded carbon including catalyst particles and a carbon support, the catalyst particles being loaded on the carbon support. The carbon support has a crystallite size of 3.5 nm or greater and 9 nm or less, a BET specific surface area of 300 m<sup>2</sup>/g or greater and 450 m<sup>2</sup>/g or less, and a pore size of 5.0 nm or greater and 20.0 nm or less. The catalyst particles are made of platinum or a platinum alloy, have a crystallite size of 2.5 nm or greater and 5.0 nm or less and a surface area of 40 m<sup>2</sup>/g or greater and 80 m<sup>2</sup>/g or less.
Resumen de: CN120569516A
The invention provides an electrolytic cell system (10). The electrolytic cell system comprises a heat storage unit (14) and an electrolytic cell (16). The heat storage unit (14) comprises at least one heat source feed inlet. The electrolytic cell (16) comprises at least one electrolytic cell cell (20), a steam inlet and at least one exhaust gas outlet. The exhaust outlet is connected to the heat source feed inlet to heat the heat storage unit (14). The heat storage unit (14) is configured to use its stored heat to generate steam for one of feeding into the steam inlet at a time and generating electricity or both feeding into the steam inlet at the same time and generating electricity. The invention also provides a system comprising an intermittent or variable power source (12) and an electrolytic cell system (10) as defined above. The intermittent or variable power source (12) may be configured to simultaneously or separately power the electrolysis cell (16) and heat the heat storage unit (14) via a heating element.
Resumen de: EP4656772A1
The present disclosure provides a water electrolysis membrane electrode, a method for preparing the water electrolysis membrane electrode, and a water electrolyzer applying the water electrolysis membrane electrode. The water electrolysis membrane electrode includes a cathode gas diffusion layer, a cathode catalytic layer, an anion exchange membrane, a hydrophobic anode catalytic layer, and an anode gas diffusion layer that are stacked in sequence. Raw materials for preparing the hydrophobic anode catalytic layer include an anode catalyst, a hydrophobic material, and an anode ionomer. A mass ratio of the anode catalyst, the hydrophobic material, and the anode ionomer is 10:1-3:1-3. A porosity of the hydrophobic anode catalytic layer is 10%-40%.
Resumen de: EP4656592A1
Die Erfindung betrifft ein Verfahren sowie eine Anlage (100) zur Herstellung eines Wasserstoff enthaltenden Produkts, wobei Ammoniak (1) unter Erhalt eines Ammoniakeinsatzes (2) einer Vorbehandlung (10) unterworfen und der Ammoniakeinsatz (2) in einem beheizten Ammoniakcracker (20) zu einem Ammoniak sowie Wasserstoff und Stickstoff enthaltenden Spaltgas (3) umgesetzt wird, wobei zur Beheizung des Ammoniakcrackers (20) ein schwefelfreies Brenngas unter Bildung eines wasserhaltigen Rauchgases (4a) verfeuert wird. Kennzeichnend hierbei ist, dass zumindest ein Teil des wasserhaltigen Rauchgases in der Vorbehandlung (10) gegen Ammoniak bis unter den Taupunkt abgekühlt wird, wobei kondensiertes Wasser sowie angewärmtes Ammoniak erhalten werden.
Resumen de: EP4656771A1
A floating hydrogen production plant (2) comprises a plurality of interconnected floating platforms (6) which are movable with respect to each other. Each floating platform (6) comprises a floating member (7). The floating member (7) of at least one floating platform (6) has an internal chamber (8) for storing hydrogen. Each of the floating platforms (6) is provided with a plurality of hydrogen production devices (3) for producing hydrogen by electrolysis of water in the ambient air through solar energy. The hydrogen production devices (3) have respective hydrogen ports which are fluidly connectable to the internal chamber (8) of the floating member (7) of the at least one floating platform (6).
Resumen de: EP4656590A1
The present invention relates to a water-efficient method of storing hydrogen using a bicarbonate/formate-based aqueous reaction system, wherein the method comprises:(A) reducing aqueous bicarbonate using hydrogen to form formate and water,(B) at least partially separating water from the aqueous reaction system to provide water and concentrated salt components comprising formate, and(C) using the water provided in step (B) to form hydrogen for use in step (A) and/or to dissolve concentrated salt components comprising bicarbonate to provide aqueous bicarbonate for use in step (A).
Resumen de: EP4656506A1
A floating power plant (2) comprises a plurality of interconnected floating platforms (6) which are movable with respect to each other. Each floating platform (6) comprises a floating member (8), wherein the floating member (8) of at least one floating platform (6) has an internal chamber (9) for storing hydrogen. The floating power plant (2) is provided with an electrolyzer including a hydrogen output and a fuel cell including a hydrogen input. The largest number of the floating platforms (6) is provided with PV panels (3) and at least one of the floating platforms (6) is provided with the electrolyzer and/or the fuel cell. The electrolyzer is electrically connectable to the PV panels (3) and the hydrogen output and/or the hydrogen input is fluidly connectable to the internal chamber (9) of the floating member (8) of the at least one platform (6).
Resumen de: KR20250169507A
본 발명은 수소 유통 관리 시스템에 관한 것으로, 풍력, 태양광 등의 재생에너지 및 기타 부생수소 등을 이용해 생산하는 수소 유통을 효율적으로 관리할 수 있도록, 풍력, 태양광 등 재생에너지 및 기타 부생수소 등을 이용해 전기에너지를 생산하는 재생에너지 발전장치에서 생산된 전기에너지를 이용해 물을 수전해장치에서 전기분해하여 수소를 추출하여 기체 또는 액체 상태로 저장하는 저장 탱크를 관리하는 공급자 단말기와; 수소를 주문하는 수요자 단말기와; 상기 수요자 단말기로부터 수소주문정보가 수신되면 상기 공급자 단말기로 수소주문정보를 전송하고, 상기 공급자 단말기로부터 상기 저장 탱크에 입출되는 수소공급정보를 수집하여 수소유통정보를 생성하는 수소유통 관리서버; 및 상기 저장 탱크의 수소를 상기 수요자가 주문한 목적지에 운송하는 수소운송수단에 구비되어 상기 수소운송수단의 상태를 감시하여 수소운송정보를 상기 수소유통 관리서버로 전송하는 운송감시장치;를 포함하는 것을 특징으로 하는 수소 유통 관리 시스템을 제공한다.
Resumen de: CN120344485A
The present invention relates to the field of hydrogen production from catalytic cracking of ammonia. The present invention comprises a primary cracking path comprising one or more catalyst-containing reaction tubes disposed within a roasting-type ammonia cracking reactor; and a parallel cleavage path comprising one or more secondary ammonia cleavage reactors arranged in succession and fluidly connected to each other. The invention can be used for producing hydrogen from ammonia.
Resumen de: AU2024213038A1
An electrolyser system and method of electrode manufacture. The electrolyser system may comprise a first vessel in communication with an electrolyser stack, a power supply, an electrode, a separator, a membrane, and a second vessel in communication with the electrolyser stack. The electrode may comprise a catalytic material and a micro- porous and/or nano-porous structure. The method of electrode manufacture may comprise providing a substrate, contacting the substrate with an acidic solution, applying an electric current to the substrate, simultaneously depositing a main material and supporting material comprising a scarifying material onto the substrate, and leaching the scarifying material.
Resumen de: EP4656774A2
Provided is a water electrolysis stack capable of improving durability. The water electrolysis stack includes a cell stack that is formed by stacking a plurality of water electrolysis cells, an inter-cell space is formed between each adjacent ones of the water electrolysis cells in the cell stack, and gas flows into the inter-cell spaces in water electrolysis.
Resumen de: AU2024222987A1
A system, comprising: an electrolyzer having a plurality of electrolysis cells arranged in a cell stack, wherein the electrolysis cells are electrically connected in series and grouped into two or more cell groups, each cell group having an electrical contact at either end; an electrical circuit having one or more switches, each switch coupled between the electrical contacts of a respective one of the cell groups and configured to selectively disconnect the cell group from the cell stack by electrically bypassing the cell group via a lower resistance path, to thereby vary the number of active electrolysis cells in the cell stack; and a controller configured to determine the number of active electrolysis cells based on a variable amount of direct current (DC) electrical energy supplied to the cell stack by an electrical energy source, and to control the one or more switches based on the determination.
Resumen de: AU2024276790A1
The specification describes a process for preparing an oxygen evolution reaction catalyst, comprising the steps of: (i) combining iridium powder and a peroxide salt to produce a powder mixture; (ii) carrying out thermal treatment on the powder mixture; (iii) dissolving the product from (ii) in water to produce a solution; (iv) reducing the pH of the solution from (iii) to affect a precipitation and form a solid and a supernatant; (v) separating the solid from the supernatant; and (vi) drying the solid. An oxygen evolution catalyst obtainable by the process is also described.
Resumen de: WO2025014390A1
Claimed are a method for producing hydrogen from ammonia and a plant for the implementation thereof. Liquid ammonia feedstock is heated, evaporated and superheated in a coil of a heat-reclaiming module. The gaseous ammonia feedstock is fed into an ammonia cracking reactor, the obtained nitrogen-hydrogen mixture is cooled in an air-cooling unit, and hydrogen is recovered. Liquid ammonia fuel is heated, evaporated and superheated. The gaseous ammonia fuel is mixed with the vent gases produced during the recovery of hydrogen, and the obtained fuel gas is fed together with heated air into the ammonia cracking reactor. The evaporation and superheating of the ammonia feedstock and the ammonia fuel are carried out in recuperative heat exchangers. An outlet for the flue gases of the ammonia cracking reactor is connected to the heat-reclaiming module. Arranged in series inside the heat-reclaiming module are coils for heating gaseous ammonia, fuel gas, air, a heat transfer agent, and liquid ammonia. The pressure of the flue gases is increased, the flue gases are cooled, and condensed distilled water is recovered in a separator, with the dewatered flue gases being released into the atmosphere. The invention makes it possible to increase the efficiency of low-carbon hydrogen production and to obtain an additional product in the form of distilled water.
Resumen de: AU2024262055A1
A family of catalysts for oxygen evolution reaction (OER) in alkaline condition is disclosed. The catalysts utilize elements which are abundant on earth, leading to lower costs compared to IrCh catalysts. The catalysts can be used in the anode of an anion exchange membrane-based water electrolyzer. The family of new catalysts comprises Ni, Fe, M, B, and O, where M is a metal from Group VIB, Group VIII, and elements 57-71 of the Periodic Table. The catalyst has a layered double hydroxide structure. Methods of making the catalysts are also described.
Resumen de: AU2024240321A1
An electrochemical system includes a counter electrode and a working electrode spaced from the counter electrode. The working electrode includes a substrate, an array of conductive projections supported by the substrate and extending outwardly from the substrate, each conductive projection of the array of conductive projections having a semiconductor composition, and including a surface, the surface including nitrogen, and an oxynitride layer disposed on the surface. The counter electrode and the working electrode are arranged in a two-electrode configuration.
Resumen de: CN120344485A
The present invention relates to the field of hydrogen production from catalytic cracking of ammonia. The present invention comprises a primary cracking path comprising one or more catalyst-containing reaction tubes disposed within a roasting-type ammonia cracking reactor; and a parallel cleavage path comprising one or more secondary ammonia cleavage reactors arranged in succession and fluidly connected to each other. The invention can be used for producing hydrogen from ammonia.
Resumen de: AU2024263112A1
The present invention relates to an electrode and in particular to an electrode suitable for gas evolution comprising a metal substrate and a catalytic coating. Such electrode can be used as an anode for the development of oxygen in electrolytic processes such as, for example, in the alkaline electrolysis of water.
Nº publicación: CA3273333A1 29/11/2025
Solicitante:
KELLOGG BROWN & ROOT LLC [US]
KELLOGG BROWN & ROOT LLC
Resumen de: AU2025203497A1
A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit 5 for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating 10 target hydrogen flows. A system and a method for stabilizing hydrogen flow to a downstream process in a 5 facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream 10 process, and controlling the operation of the downstream process based on the operating target hydrogen flows. ay a y