Resumen de: CN121307117A
本发明属于液流电池技术领域,特别涉及一种液流电池电堆的装配工艺,包括:S1、一体注塑包覆成型双极板液流框组合单体,双极板液流框组合单体在双极板的一侧为正极侧液流框,边缘形成下延环墙,另一侧为负极侧液流框,边缘形成下凹肩部;S2、在相邻两个双极板液流框组合单体之间放置隔膜,隔膜的边缘到达下延环墙内壁或下凹肩部的侧边部;将隔膜主通液孔分别与正极侧液流框及负极侧液流框的主通液孔对齐,在主通液孔的外围进行激光焊接;再沿着双极板液流框组合单体的下延环墙进行一圈激光焊接,使隔膜边缘的两个侧面分别与两个双极板液流框组合单体的下延环墙内壁和下凹肩部焊接。本发明省去了橡胶密封组件,有效保证电堆整体的使用寿命。
Resumen de: CN121307094A
本发明提出了一种无循环泵燃料电池氢气循环系统的控制方法、设备及介质,其通过引射器控制策略,实现了稳态下针对不同负载对引射器尺寸的双自由度精确维持与微调(喷嘴直径和混合式直径的独立无极调节),扩大高效工作区,以确保不同负载下的引射效率最大化,并协同主比例阀控制策略,克服在稳态下系统内部微小的流量波动,确保压力稳定无静差。
Resumen de: CN121307120A
本发明涉及一种固体氧化物燃料电池外部下压装置及其使用方法,该装置包括机架、一个或多个下压组件;所述机架用于固定所述一个或多个下压组件;所述下压组件包括伺服电机、连接件、压力传感器、模具弹簧以及压杆;所述伺服电机固定在机架顶端,伺服电机通过连接件与压力传感器相连接;所述压力传感器的另一端与模具弹簧相连接;所述模具弹簧的另一端与压杆固定连接,所述压杆向固体氧化物燃料电池顶部施加压力。本发明结构简单,能够实现对燃料电池上顶板的多个点同时施加载荷,也可单独调节每个点载荷大小,从而实现对燃料电池上施加下压力的控制。
Resumen de: CN121295543A
本公开提供了一种纤维毡及其制备方法和应用。该纤维毡包括聚丙烯腈纤维和植物纤维,聚丙烯腈纤维与植物纤维的质量比为1:0.38~0.67;纤维毡的孔隙率为78~86%;在纤维毡的孔隙中,微孔孔隙的体积占比为15~25%,介孔孔隙的体积占比为60~70%、大孔孔隙的体积占比为15~20%;其中,微孔孔隙的孔径为1~5μm,介孔孔隙的孔径为20~100μm、大孔孔隙的孔径为100~1000μm。本公开所提供的纤维毡中,植物纤维作为刚性骨架,可弥补聚丙烯腈原丝的连续性,提高纤维毡的抗拉强度,且植物纤维在热解后还能产生微孔,提升纤维毡的孔隙率。此外,该纤维毡的孔隙率为78~86%,且具有多级孔隙网络,可以满足纤维毡在新能源领域,如锂硫电池、燃料电池等方面的性能要求。
Resumen de: DE102025120199A1
Die vorliegende Erfindung betrifft ein Verfahren zum Abschalten einer Brennstoffzelle und zum Überwachen eines solchen Abschaltvorgangs (12) einer Vorrichtung (101, 102) zum Bereitstellen von elektrischer Energie, wobei das Verfahren folgende Schritte aufweist:- Hinterlegen eines Referenz-Spannungsverlaufs (70),- Unterbrechen der Zufuhr des Sauerstoffs zur Kathode (16) mit der Sauerstoffzufuhreinheit (32),- Bestimmen des Spannungsverlaufs (68) ab der Unterbrechung der Zufuhr des Sauerstoffs zur Kathode (16) mittels der Spannungsmesseinrichtung (50),- Vergleichen des bestimmten Spannungsverlaufs (68) mit dem Referenz-Spannungsverlauf (70) und Bestimmen des Grads der Spannungsabweichung (72) mit der Steuerungseinheit (60), und- Erzeugen eines Hinweissignals mit der Steuerungseinheit (60) für den Fall, dass der Grad der Spannungsabweichung (72) einen vorgebbaren Schwellenwert über- oder unterschreitet.Ferner betrifft die vorliegende Erfindung ein Computerprogramm zum Durchführen eines solchen Verfahrens sowie eine Vorrichtung (101,102), die mit einem solchen Verfahren betrieben werden kann.
Resumen de: DE102024206391A1
Die Erfindung geht aus von einem Brennstoffzellensystem mit zumindest einer Brennstoffzellenvorrichtung (10a; 10b; 10c), welche zumindest einen Abgasanschlussstutzen (12a; 12b; 12c) aufweist, der dazu eingerichtet ist, einen Abgasstrom (14a; 14b; 14c) aus der Brennstoffzellenvorrichtung (10a; 10b; 10c) abzuführen, mit zumindest einem Rohrleitungsabgassystem (16a; 16b; 16c), welches zumindest eine Rohrleitungsanschlusseinheit (18a; 18b; 18c) aufweist, die fluidisch mit dem Abgasanschlussstutzen (12a; 12b; 12c) verbunden ist, und die dazu eingerichtet ist, den Abgasstrom (14a; 14b; 14c) der zumindest einen Brennstoffzellenvorrichtung (10a; 10b; 10c) an das Rohrleitungsabgassystem (16a; 16b; 16c) abzuleiten.Es wird ein Steckverbindungsrohrelement (20a; 20b; 20c) vorgeschlagen, welches dazu eingerichtet ist, zu einer abgedichteten Steckverbindung der Brennstoffzellenvorrichtung (10a; 10b; 10c) mit dem Rohrleitungsabgassystem (16a; 16b; 16c), in die Rohrleitungsanschlusseinheit (18a; 18b; 18c) eingesteckt zu werden.
Resumen de: DE102024119145A1
Die vorliegende Erfindung betrifft ein Energiesystem (2) und ein Verfahren zu dessen Betrieb. Das Energiesystem (2) weist auf: eine Energieerzeugungsvorrichtung (3) oder eine Schnittstelle zu einer Energieerzeugungsvorrichtung (3), die zur Erzeugung elektrischer Energie bereitgestellt ist, und die insbesondere als Photovoltaikeinrichtung (3a) ausgebildet ist; ein erstes Untersystem (10), mit einer Elektrolyseeinrichtung (13), welche zur Erzeugung von Wasserstoff bereitgestellt ist, und mit einer Batterieeinrichtung (12), die zur kurzzeitigen Speicherung und Bereitstellung von elektrischer Energie bereitgestellt ist; ein zweites Untersystem (20), mit einer ersten Speichereinrichtung (21), insbesondere einer Hochdruckspeichereinrichtung, die zum Speichern des von der Elektrolyseeinrichtung (13) erzeugten Wasserstoffs bereitgestellt ist. Damit möglichst viele Komponenten des Energiesystems (2) zu dessen erweiterter Funktion beitragen und für einen effizienten Betrieb über eine optimierte Steuerung optimal gesteuert und im Energiesystem (2) eingebunden werden können, ist wenigstens eine als Hydridkompressoreinrichtung (31, 41) ausgebildete Kompressoreinrichtung (30, 40) bereitgestellt, welche zum Komprimieren des erzeugten Wasserstoffs vor der Einspeicherung in die erste Speichereinrichtung (21) ausgebildet ist. Zur Steuerung des Energiesystems (2) ist eine Steuereinrichtung (60) bereitgestellt, die eine intelligente, vorzugsweise vorausschauende Energiemanagementeinrichtung
Resumen de: WO2026010719A1
An ejector (100, 200, 300) includes a convergent portion (101, 201, 301); a cylindrical throat (102, 202, 302) downstream of the convergent portion and having a length Tl and a diameter Td; and a divergent portion (103, 203, 303) downstream of the throat and having a length Dl and a divergence angle Da between its internal surface and the flow axis (Fx). The primary nozzle has a minimum diameter Nd and an orifice (122, 222, 322) coaxial with the flow axis (Fx) and separated from an upstream end of the throat by a separation distance NTl, wherein: 6.1 ≥ (Td / Nd) ≥ 4.5, and 7.0 ≥ (Tl / Td) ≥ 3.5, and 1.1 ≥ (NTl / Td) ≥ 0.3, and 4.5° ≥ Da ≥ 2.0°, and (Dl / Td) ≥ 10. Preferably the secondary or suction inlet is coaxial with a primary flowpipe (123) defining the primary nozzle for a distance upstream of the nozzle orifice. The ejector (100, 200, 300) may be arranged in parallel with a downsized blower (521) to recirculate hydrogen at the anode (512) of a proton exchange membrane fuel cell power supply unit (500), wherein the ejector operates alone in a high load range (H) of the unit, and progressively replaces the operation of the blower (521) through a medium load range (M) which may be from about 25% to 44% of the maximum power output P of the unit.
Resumen de: WO2026010710A1
Provided herein are systems and methods for using pure hydrogen as fuel in a turbocharged fuel cell. A vehicle may include a storage (200) configured to store pressurized hydrogen, a fuel cell (204), a catalytic converter (226), and a turbo compressor (220, 224). The fuel cell includes an anode loop fluidically coupled to the storage and configured to receive the pressurized hydrogen therefrom, and a cathode loop configured to receive oxygen. The catalytic converter, arranged downstream from the anode loop, recovers excess hydrogen from the pressurized hydrogen used by the anode loop and recovers excess oxygen from the oxygen used by the cathode loop. The turbo compressor includes an expander (224) to recover heat from the catalytic converter (226).
Resumen de: WO2026010700A1
Provided herein are systems and methods for improving warm-up times for fuel cells. A method of the present disclosure includes detecting, by one or more processors, a warm-up condition of a fuel cell, and controlling, by the one or more processors, a first valve and a second valve, to cause pressurized oxygen and pressurized hydrogen to be supplied to a catalytic converter arranged downstream from the fuel cell, to cause the catalytic converter to produce heat to be transferred to a coolant loop of the fuel cell, during the warm-up condition.
Resumen de: WO2026010699A1
Provided herein are systems and methods for using a methanol solution in a fuel cell. A vehicle may include a storage configured to store fuel; a reformer configured to produce hydrogen from the fuel received from the storage; and a fuel cell. The fuel cell may include an anode loop fluidically coupled to the reformer and configured to receive the hydrogen therefrom; and a cathode loop configured to receive oxygen. A catalytic converter arranged downstream from the fuel cell may be configured to recover excess hydrogen from the hydrogen used by the anode loop and to recover excess oxygen from the oxygen used by the cathode loop. The catalytic converter may further supply heat to an expander of a turbo compressor through the reformer.
Resumen de: WO2026008720A1
The invention relates to an assembly and a corresponding method for electrically contacting multiple lined-up connection elements of a superordinate unit. The assembly according to the invention has a profile rail and a clamping device which are interlockingly and releasably coupled to one another. The profile rail has multiple holes in its lower face, which holes are designed in such a way that the connection elements protrude therethrough when the profile rail is fastened to the superordinate unit. The clamping device has at least one terminal block which is designed in such a way that the terminal block has, on its lower face opposite a connection element, a contact mechanism having at least one contact face which contacts at least portions of the connection element of the superordinate unit in order to make electrical contact.
Resumen de: AU2024305070A1
An electrochemical cell comprising a non electrically-conductive structural frame for supporting components of the electrochemical cell and a tensioning element, wherein the structural frame comprises engagement means adapted to engage the tensioning element, wherein the engagement means comprises at least two bosses on the structural frame, each boss adapted to engage with a corresponding aperture on the tensioning element.
Resumen de: AU2024290995A1
Disclosed is an electro-synthetic or electro-energy cell, comprising a first gas diffusion electrode, and a second electrode. A spacer, including but not limited to a porous capillary spacer, is positioned at least partially between the first gas diffusion electrode and the second electrode. In one form the liquid electrolyte is transferred onto a side surface of the spacer beyond the electrodes. In one example there is also provided a liquid electrolyte reservoir, where the first gas diffusion electrode, the second electrode and the spacer are positioned outside of the liquid electrolyte reservoir. In one example the liquid electrolyte reservoir includes an aperture to release liquid electrolyte. In another form, an intermediate liquid feed structure is located at least partially between the spacer and the liquid electrolyte reservoir, wherein the liquid electrolyte is transferred by the intermediate liquid feed structure. Methods of operation and cell stacks are also disclosed.
Resumen de: AU2024326124A1
The present invention provides a proton-exchange membrane comprising a blend of first and second ionomers, the first ionomer comprising a first main chain covalently bonded to a first side chain and the second ionomer comprising a second main chain covalently bonded to a second side chain; wherein each of the first and second side chains comprise a sulfonic acid end group; wherein a relaxation modulus of a membrane formed from the first ionomer is at least 10 times less than a relaxation modulus of a membrane formed from the second ionomer, preferably at least 100 times less; and wherein the relaxation modulus of the membrane formed from the second ionomer is greater than 10,000 MPa.
Resumen de: WO2026008971A1
Dispersion According to the present invention there is provided a dispersion comprising: a solvent; and a radical scavenger dispersed in the solvent. The radical scavenger comprises particles and each particle comprises cerium, a metal (M) and oxygen, wherein the metal (M) is present in an oxidation state of +5. There is also provided an ion-conducting membrane, catalyst- coated ion-conducting membrane, membrane electrode assembly, electrochemical device, and associated methods of producing a dispersion.
Resumen de: WO2026008820A1
The present invention relates to a bipolar plate (14) for a fuel cell, comprising a first face (18) and a second face, a first set of channels (26) extending over the first face and a second set of channels extending over the second face, the bipolar plate further comprising cooling units (30) comprising circulation ducts (36) formed by orifices passing through the thickness of the bipolar plate from the first face to the second face, the circulation ducts being configured to circulate a cooling fluid in the bipolar plate. The cooling units are surrounded by the first set of channels on the first face and by the second set of channels on the second face.
Resumen de: DE102024119112A1
Eine Brennstoffzellenabgasanlage (20) für ein Brennstoffzellensystem (10), insbesondere in einem Fahrzeug, umfasst eine Mischanordnung (24) zur Aufnahme von aus wenigstens einer Brennstoffzelle (12) eines Brennstoffzellensystems (10) abgegebenem Brennstoffzellenabgas (B) und zur Aufnahme eines Mischgases (L) und zur Erzeugung eines Gemisches (G) aus Brennstoffzellenabgas (B) und Mischgas (L) sowie eine Wasser-Abscheideanordnung (50) im Bereich der Mischanordnung (24) oder/und stromabwärts der Mischanordnung (24) zum Abscheiden von aus dem Gemisch (G) auskondensiertem Wasser (W) und zur Abgabe des Gemisches (G).
Resumen de: US20260011757A1
A fuel-cell exhaust system for a fuel cell system includes a heat exchanger arrangement with a first heat exchanger area, through which fuel-cell exhaust gas can flow, and a second heat exchanger area, through which cooling gas can flow, the first heat exchanger area and the second heat exchanger area being in heat transfer interaction for transferring heat from the fuel-cell exhaust gas to the cooling gas, and a mixing arrangement for receiving cooled fuel-cell exhaust gas discharged from the first heat exchanger area and heated cooling gas discharged from the second heat exchanger area in a mixing volume for producing a mixture of cooled fuel-cell exhaust gas and heated cooling gas and for discharging the mixture.
Resumen de: US20260011756A1
Proposed is a fuel cell system, including a fuel cell stack connected to an intake line and an exhaust line, an air compressor connected to the intake line, and a heat energy storage part provided between the fuel cell stack and the air compressor on the intake line and absorbing and storing heat from the air on the intake line through a thermochemical reaction and releasing moisture into the air on the intake line.
Resumen de: US20260011758A1
Provided herein are systems and methods for improving warm-up times for fuel cells. A method of the present disclosure includes detecting, by one or more processors, a warm-up condition of a fuel cell, and controlling, by the one or more processors, a first valve and a second valve, to cause pressurized oxygen and pressurized hydrogen to be supplied to a catalytic converter arranged downstream from the fuel cell, to cause the catalytic converter to produce heat to be transferred to a coolant loop of the fuel cell, during the warm-up condition.
Resumen de: US20260011765A1
An electrochemical cell device includes a plurality of electrochemical cells arranged in a first direction, and including a first cell and a second cell. The plurality of electrochemical cells each include an element portion, a support body, and a fixing material. The support body supports the element portion. The fixing material fixes the element portion and the support body. The first cell is different from the second cell in a position of the fixing material when viewed in a plan view in the first direction.
Resumen de: US20260011763A1
A system includes a plurality of columns of fuel cells located in a hotbox, a direct current (DC) bus, a plurality of DC/DC converters, each DC/DC converter being electrically connected to a respective column of fuel cells and to the DC bus, and a controller configured for independently controlling the columns of fuel cells. The controller is configured to activate a first column of fuel cells by activating fuel flow to the first column of fuel cells and activating a first DC/DC converter of the plurality of DC/DC converters electrically connected to the first column of fuel cells while a second column of fuel cells is already active.
Resumen de: US20260011764A1
An SOFC for the combined production of electricity and a nitric oxide (NO) containing gas stream, wherein NO represents at least 10% by weight of the NO containing gas stream, comprising: an anodic side comprising a solid gas-permeable anode, a gas inlet and a gas outlet;a source of ammonia gas in fluid communication with the gas inlet at the anodic side;a cathodic side comprising a solid gas-permeable cathode, a gas inlet and a gas outlet;a fully dense electrolyte, separating the anodic side from the cathodic side;means for heating the SOFC to a temperature ranging from 550 to 800° C.; and means for collecting a current flowing between the anodic side and the cathodic side.
Nº publicación: JP2026002504A 08/01/2026
Solicitante:
トヨタ自動車株式会社
Resumen de: JP2026002504A
【課題】燃料電池の発電に使用される水素および酸素の減少を抑制できる技術を提供する。【解決手段】再生型燃料電池システムは、燃料電池と、水を貯蔵する水タンクと、水素と酸素とを結合させて水を生成する再結合器と、水タンクから供給された水を電気分解して燃料電池の電気化学反応に用いられる水素と酸素とを生成する水電解装置と、を備え、水タンクは、燃料電池から排出された水素を含む水を貯蔵する第1領域と、燃料電池から排出された酸素を含む水を貯蔵する第2領域と、第1領域と第2領域とを連通する連通部と、を備え、再結合器は、連通部に配置されている。【選択図】図3