Resumen de: FR3159443A1
Un procédé de surveillance est mis en œuvre dans un véhicule comprenant une batterie cellulaire comportant N cellules de stockage d’énergie électrique, avec N > 1, et N capteurs mesurant respectivement N tensions aux bornes desdites N cellules, et un groupe motopropulseur propre à être alimenté en énergie électrique par cette batterie cellulaire pour produire du couple moteur. Ce procédé comprend une étape (10-20) dans laquelle, lorsqu’au moins une tension mesurée est en dehors d’un intervalle de tensions choisi, on interdit l’alimentation du groupe motopropulseur en énergie électrique lorsque le véhicule est dans une phase de roulage ou une recharge de la batterie cellulaire lorsque cette dernière est dans une phase de recharge. Figure 3
Resumen de: FR3159470A1
Un élément électrochimique sodium-ion comprenant un électrolyte comprenant du carbonate de vinylène, de l’hexane-1,3,6-tricarbonitrile, un ou plusieurs sels de sodium et un ou plusieurs solvants. Figure d’abrégé : Figure 1
Resumen de: FR3159391A1
La présente invention se rapporte à une composition comprenant un polymère fluoré P1 et un additif polymère P2.
Resumen de: FR3159392A1
La présente invention se rapporte à une composition comprenant un polymère fluoré P1 et un additif polymère P2 comprenant au moins un groupement fonctionnel contenant un atome de phosphore.
Resumen de: FR3159471A1
SYSTÈME ET PROCÉDÉ DE SURVEILLANCE ET DE PILOTAGE D’UN RÉSEAU ÉLECTRIQUE D’UN AÉRONEF COMPRENANT DES PILES À COMBUSTIBLE L’invention concerne un procédé de surveillance et de pilotage d’un réseau électrique d’un aéronef comprenant une pluralité de piles à combustible (10, 11) et une pluralité de consommateurs électriques (20, 21, 22), ledit procédé comprenant : une étape de surveillance (E1) d’un ensemble de paramètres de ladite pluralité de piles ; une étape de détection d’une performance altérée (E2) d’une des piles, dite pile défaillante ; une étape de détermination (E3) d’au moins un consommateur électrique, dit consommateur élu, dont l’alimentation en énergie électrique peut être basculée pendant un laps de temps prédéterminé, d’un mode nominal en un mode dégradé; une étape d’alimentation (E4) en mode dégradé de chaque consommateur élu ; une étape d’isolation (E5) de ladite pile défaillante du reste du réseau électrique ; une étape de régénération (E7) de la pile défaillante ; une étape de réintégration (E8) de ladite pile défaillante régénérée dans ledit réseau et de retour à une alimentation nominale de chaque consommateur élu, à la fin de ladite régénération de ladite pile défaillante. Figure pour l’abrégé : figure 2
Resumen de: FR3159408A1
Procédé de détermination d’un état de fonctionnement d’un dispositif d’entraînement motorisé d’un dispositif d’occultation pour une installation d’occultation Un procédé de détermination d’un état de fonctionnement d’un dispositif d’entraînement motorisé comprend des étapes de sélection (E140) d’un actionneur électromécanique, (E150) d’une batterie et (E160) d’un panneau photovoltaïque, de détermination (E180) d’une localisation géographique d’une installation, (E210) d’une orientation d’un mur d’un bâtiment, (E220) d’un masque solaire, (E170) d’un profil de courant consommé pendant un déplacement d’un écran d’un dispositif d’occultation, (E260) d’une valeur d’un état de charge de la batterie, (E270) d’une valeur de température représentative d’une température subie par la batterie, (E290) d’une valeur d’un état de vieillissement de la batterie, (E300) d’un profil de tension délivrée par la batterie pendant un déplacement de l’écran et (E310) de l’état de fonctionnement du dispositif d’entraînement motorisé. Figure pour l'abrégé : Figure 4.
Resumen de: US2025263304A1
In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, the disclosure, in one aspect, relates to the efficient and rapid synthesis of high-performance sodium ion electrolytes. The electrolytes have the general formula Nau+yNw−yMyLazCl3−zVv. The electrolytes possess superionic conductivity and display a low electronic conductivity, which ensures negligible electron transport contribution to the measured total conductivity and thereby enhancing safety when applied in energy storage devices. The synthesis of the electrolytes is significantly faster when compared to the synthesis of lithium electrolytes and the process can be scalable to produce large amounts of electrolytes.
Resumen de: US2025263297A1
The present disclosure relates to a process for preparing a lithium salt of bis(fluorosulfonyl)imide (LiFSI) in solid form, wherein the LiFSI salt in solid form is extracted from a solution comprising at least one solvent through supercritical anti-solvent extraction. The present invention also relates to the LiFSI in solid form obtained therefrom, as well as the use of such LiFSI in an electrolyte for batteries.
Resumen de: US2025263301A1
The present application relates to a negative electrode active material, its preparation method, a negative electrode plate, a lithium-ion battery, and an electrical apparatus. The lithium-ion battery comprises one or more battery cells, each containing a negative electrode plate. The negative electrode plate includes a negative electrode current collector and a negative electrode film layer on at least one surface. The film layer comprises a negative electrode active material, which comprises an inner core and a coating layer. The inner core is graphite, while the coating layer contains hard carbon. In a cumulative distribution curve of R values under a laser microscopic confocal Raman spectrometer, the R50 value (50% cumulative distribution) ranges from 0.15 to 0.40. This negative electrode active material enhances the battery's energy density, kinetic performance, and cycling performance, making it highly efficient for lithium-ion battery applications.
Resumen de: US2025262831A1
The present invention relates to an electrode rolling apparatus for applying pressure to a non-coated portion of an electrode.
Resumen de: US2025262986A1
A fuel cell electric vehicle (FCEV) includes an electric traction motor configured to drive the FCEV and generate power through regenerative braking, a high voltage (HV) battery system including a HV bus and a HV battery configured to power the electric traction motor, and a fuel cell stack (FCS) configured to generate electricity to recharge the HV battery and/or power the electric traction motor. A powertrain control system for preventing over-voltage of the HV bus and HV battery includes a controller having one or more processors configured to control (i) a fuel cell power limit of the FCS, and (ii) a regenerative braking power limit of the electric traction motor. The controller is programmed to measure a voltage of the HV battery system, and selectively limit the fuel cell power limit and/or the regenerative braking power limit when the measure voltage exceeds a predetermined threshold.
Resumen de: US2025266521A1
A battery unit includes: a connecting portion electrically connectable to an electrical apparatus in which the battery unit is mounted; a cell that allows supply of electric power to the electrical apparatus; a relay that switches between a conductive state in which a power supply line between the connecting portion and the cell is electrically connected and an interrupt state in which the power supply line is electrically interrupted; a first notification device that operates, when being supplied with electric power, to allow an operating state to be recognized from outside; and a first supply source that supplies electric power to the first notification device when the first supply source is connected to the first notification device and the relay is in the conductive state.
Resumen de: US2025266535A1
A casing (100, 201, 202, 300) containing at least one electrode jelly roll assembly, wherein the casing comprises a folded sheet (110, 210, 310), defining a first open end portion (113) and a second open end portion (114) arranged on opposite sides of the casing. The folded sheet comprises a first sheet edge (111, 211) and a second sheet edge (112, 212) wherein the first sheet edge and the second sheet edge extend from the first open end portion to the second open end portion. The casing further comprises a joining plate (120, 220, 320) arranged to join at least a part of the first sheet edge and the second sheet edge, such that the folded sheet and the joining plate form a closed profile of the casing. Moreover, the casing comprises an interlocking structure (250) configured to secure the joining plate and the folded sheet.
Resumen de: US2025266572A1
High performance flexible lithium-sulfur flexible energy storage devices include a flexible lithium metal anode for an energy storage device comprising an electrically conducting fabric functionalised with a 3D hierarchical MnO2 nanosheet lithiophilic material; a flexible graphene/sulfur cathode protected by a FBN/G interlayer; and a flexible separator for an energy storage device, wherein the separator comprises one or more microporous films of Li ion selective permeable polyolefin material wherein at least a portion of the pores of the film are associated with nanoporous polysulfone polymer positioned between the anode and the cathode.
Resumen de: US2025266452A1
Provided is a negative electrode for a lithium secondary battery, comprising a negative electrode active material and a fibrous binder. The negative electrode active material has an ID/IG value of about 0.18 or more and less than about 0.7 as a result of Raman spectroscopy analysis. The active material may be carbon-based and exhibit specific characteristics according to X-ray diffraction (XRD) analysis. The fibrous binder may be polytetrafluoroethylene (PTFE). Additionally, a method of manufacturing the negative electrode involves preparing a mixture of the active material and a binder precursor, then fiberizing the binder precursor by applying shear stress. The negative electrode may also include a conductive material. The disclosure further includes a lithium secondary battery comprising this negative electrode.
Resumen de: WO2025173026A1
Embodiments of the present disclosure generally relate to battery management systems, and more particularly relate to a battery regeneration system for optimizing de-sulfation of a lead- acid type storage battery and method thereof The battery regeneration system (100) includes sensors (102), a processor (108), and a memory unit (110). The sensors determine battery parameters during charging and discharging cycles. The processor analyzes the parameters to assess sulphation severity and conductive medium levels in lead-acid battery (104). Using AI- based techniques, processor selects very high-frequency cross-pulsing technique for de- sulfation. The system generates pulse sequence data with adjustable frequency and amplitude, transmitting it to control unit (114) for de-sulfation. Periodically, pulse frequency and amplitude are adjusted within predefined ranges. The control unit receives and applies modified data to lead-acid battery, charging battery to its original condition after de-sulfation. The system also communicates conductive medium level to Battery Monitoring System (BMS) (118).
Resumen de: WO2025173027A1
A method for synthesizing a high energy density cathode material for lithium-ion batteries are disclosed. The method includes obtaining a solution comprising a ferrous salt, a manganese salt, and a source of carboxylic acid in de-ionized water. Thereafter, a source of phosphate and a source of lithium are added to form a precursor solution. Thereafter, source of glycol is added to the precursor solution. Once the source of glycol is added, a hydrothermal synthesis process of the precursor solution is performed at a predetermined temperature for a predetermined period to crystallize plurality of LMFP primary particles into secondary particles. The secondary particles possess a spherical morphology, contributing to a high tap density and high energy density of the cathode material.
Resumen de: WO2025175170A1
Non-invasive battery storage capacity recovery is achieved by performing induction heating of an assembled battery cell 100 positioned within a central region of a coil electrical conductor 102. The induction heating is performed applying an alternating current through the coil electrical conductor to generate an alternating magnetic field 104 within the assembled battery cell 100 to induce eddy currents 106 within the assembled battery cell. The alternating current has a frequency from 50 Hz to 30 MHz, and the alternating magnetic field has a mean magnetic field strength from 5 mT to 100 mT.
Resumen de: WO2025175097A1
A microgrid system may include a portable enclosure containing at least one energy storage device, at least one inverter, a switchgear, at least one processor, and at least one non-transitory computer readable storage medium storing instructions thereon that cause the microgrid system to measure, a frequency or a voltage to generate first frequency data or first voltage data, provide, via a graphical user interface of the microgrid system, the first frequency data and the first voltage data to an operator of the microgrid system, receive one or more of a center point voltage parameter, a center point frequency parameter, and a power discharge bias parameter, and while maintaining active operation of the at least one inverter, update operating parameters of the at least one inverter responsive to the received one or more of the center point voltage parameter, the center point frequency parameter, and the power discharge bias parameter.
Resumen de: US2025262927A1
Aspects of the subject disclosure relate to an enclosure for one or more electrical components for a battery pack. The enclosure may be configured to mechanically and electrically couple to an energy volume of the battery pack. The enclosure may include an access panel. The access panel may be formed from a solid insulating structure configured to at least partially cover the one or more electrical components, and a conductive layer on a surface of the solid insulating structure. The enclosure may be a modular enclosure that can be used to provide electrical connection to any of various energy volumes including batteries or battery cells of any of various cell chemistries.
Resumen de: US2025262985A1
Thermal regulation systems, apparatus, and methods for regulating the temperature of a battery and/or other components of an electrically-powered system. The thermal control system can include a passive valve in communication with to two or more fluid pathways, a first pump, and a second pump. In some examples, a position of a shuttle within a housing of the passive valve can be controlled based on a ratio of a first pressure generated by the first pump to a second pressure generated by the second pump. In some examples, a position of a shuttle within a housing of the passive valve can be controlled based activating one of the first pump or the second pump while the other pump is inactive.
Resumen de: US2025262942A1
A switch in one power storage pack is turned ON and when all of a plurality of voltages respectively measured by voltage measurement units in all power storage packs including the switch that has been turned ON indicate energization, it is determined that the current state is normal, and when a voltage indicating energization is measured by the voltage measurement unit in the one power storage pack including the switch that has been turned ON and a voltage indicating de-energization is measured by the voltage measurement unit in a power storage pack other than the one power storage pack including the switch that has been turned ON, it is determined that there is an anomaly in a power line for a power storage pack included in a plurality of power storage packs.
Resumen de: US2025262978A1
A system, such as an electrified vehicle, includes a battery, such as a traction battery. The battery includes cells each having a state. The system further includes a controller that controls the charging and discharging of the battery according to a state of the battery derived at least in part from (i) the state of a first cell and (ii) a difference of the state of a second cell with the state of the first cell.
Resumen de: US2025262983A1
A battery monitoring method includes acquiring monitoring data of a secondary battery, identifying a degradation factor based on the acquired monitoring data, and setting a usage condition of the secondary battery based on a degradation factor of the secondary battery.
Nº publicación: US2025266528A1 21/08/2025
Solicitante:
DIMAAG AI INC [US]
DIMAAG-AI Inc
Resumen de: US2025266528A1
Described herein are battery modules comprising immersion-cooled prismatic battery cells and methods of fabricating thereof. A battery module comprises prismatic battery cells that are stacked along the primary module axis. The module also comprises top, bottom, and side covers and two end plates, collectively enclosing these battery cells. Each cover forms two fluid channels, both fluidically open to the prismatic battery cells. Furthermore, the module comprises bus bars that interconnect the cell terminals and protrude into the fluid channels formed by the top cover. One end plate comprises two fluid ports for connecting to a thermal management system. Each port is fluidically coupled to one fluid channel, formed by the top cover, and one fluid channel, formed by the bottom cover. The other end plate fluidically couples the two fluid channels, formed by the top cover, and, separately, the two fluid channels, formed by the bottom cover.