Resumen de: CN119570481A
本发明提供一种镁掺杂碳点及其应用与促进烟草种子萌发的方法,该镁掺杂碳点的制备方法包括如下步骤:1)将烟粉与还原型谷胱甘肽以1:(1.5‑4)的质量比混合后,溶解于甲酰胺中,超声分散后,得到反应液A;将氢氧化镁以1.2‑1.4倍烟粉质量溶解于甲酰胺中,超声分散后,得到反应液B,与所述反应液A混匀后置于高压反应釜中反应;2)反应结束后,冷却,抽滤,将得到的滤液转移到透析袋中,将透析后的溶液冷冻干燥,得到镁掺杂碳点。本发明属于生物农业技术领域,提供的镁掺杂碳点可有效促进烟草种子的萌发,有利于提高壮苗培育水平。
Resumen de: CN119581524A
本发明公开一种碳包覆钠离子电池正极材料及其制备方法。所述正极材料含有包覆层及内核晶粒,包覆层为1nm‑20nm厚度的碳层,所述内核晶粒的化学式为NaXFeY(PO4)z(P2O7)w。本发明通过设计合成路线,做到晶粒大小可控,碳包覆均匀、厚度可控,解决了聚阴离子导电性差的问题,大大提升了材料的克容量、倍率性能,制备的钠离子正极材料0.2C首充克容量119.4mAh/g(理论值129mAh/g),5C放电克容量112.6mAh/g,为钠离子电池在动力电池、储能方向的大规模应用奠定了基础,具有极大的商业应用前景。
Resumen de: CN119569039A
本发明公开了一种尿素衍生碳点的制备及其抑制藻和降解藻毒素的应用,属于纳米农业调控技术领域。本发明以尿素作为底物,通过水热法合成得到尿素衍生碳点(UDs)。该UDs能够作为抑制剂在抑制湖泊中藻细胞生长,还可作为光催化剂生成自由基攻击藻细胞,增加藻细胞氧化应激水平和膜损伤程度致使藻细胞死亡,并同时降解其产生的微囊藻毒素。
Resumen de: WO2025049747A1
The present invention relates to a lithium-ion battery (LiB) having a binder-free anode comprising an active material and about 1-5% by weight of single wall carbon nanotubes (SWCNT) as a conductive additive, wherein the SWCNT has an inorganic impurity content of less than 10% by weight. The LiB of the present invention having a binder-free anode, provides higher capacity than a LiB having an anode that contains a polymeric binder.
Resumen de: WO2025049448A1
Aspects of the present disclosure generally relate to processes for forming multimetallic alloys and carbon-supported multimetallic alloys. In an aspect, a process for forming carbon-supported PtNiCoRu nanoparticles is provided. The process includes forming a mixture comprising a platinum (Pt) metal source, a nickel (Ni) metal source, a cobalt (Co) metal source, a ruthenium (Ru) metal source, a carbon source, and a solvent. The process further includes heating the mixture at a temperature that is from about 80°C to about 250°C to form carbon-supported nanoparticles, the carbon-supported nanoparticles including a carbon support, and PtNiCoRu single phase alloy nanoparticles chemically bonded to the carbon support. Processes for forming carbon-supported PtNiCoRuFe nanoparticles are also provided. Processes for forming PtNiCoRu and PtNiCoRuFe alloy nanoparticles are also provided.
Resumen de: US2025075298A1
Aspects of the present disclosure generally relate to processes for forming multimetallic alloys and carbon-supported multimetallic alloys. In an aspect, a process for forming carbon-supported PtNiCoRu nanoparticles is provided. The process includes forming a mixture comprising a platinum (Pt) metal source, a nickel (Ni) metal source, a cobalt (Co) metal source, a ruthenium (Ru) metal source, a carbon source, and a solvent. The process further includes heating the mixture at a temperature that is from about 80° C. to about 250° C. to form carbon-supported nanoparticles, the carbon-supported nanoparticles including a carbon support, and PtNiCoRu single phase alloy nanoparticles chemically bonded to the carbon support. Processes for forming carbon-supported PtNiCoRuFe nanoparticles are also provided. Processes for forming PtNiCoRu and PtNiCoRuFe alloy nanoparticles are also provided.
Resumen de: US2025074768A1
A method for producing hydrogen (H2) from methane (CH4) includes introducing a feed gas stream containing CH4 into a reactor containing a nickel (Ni) and cobalt (Co)-based titania supported (NCT) catalyst; passing the feed gas stream through the reactor in contact with the NCT catalyst at a temperature of 600 to 1000° C. to convert CH4 to carbon (C) and H2, and produce an H2-containing gas stream leaving the reactor; and separating H2 from the H2-containing gas stream. The method has a CH4 conversion of up to 95% of the initial weight of CH4 and a H2 yield of up to 90% based on the CH4 conversion.
Resumen de: US2025074774A1
A method for producing carbon nanotubes includes subjecting a plastic material and an acidic zeolite to a pyrolysis reaction so as to form a hydrocarbon compound having 1 to 6 carbon atoms. The acidic zeolite has a molar ratio of SiO2 to Al2O3 ranging from 5.1:1 to 80:1. Another method for producing carbon nanotubes includes subjecting a hydrocarbon compound having 1 to 6 carbon atoms and a catalyst to a catalysis reaction so as to obtain the carbon nanotubes. The catalyst includes a support and a plurality of ferromagnetic nanoparticles supported on the support. The ferromagnetic nanoparticles have an average diameter ranging from 20 nm to 30 nm, and are derived from acetylacetonate of a ferromagnetic transition metal.
Resumen de: EP4516846A2
Methods and systems for the fabrication of composite materials are generally described. Certain inventive methods and systems can be used to fabricate composite materials with few or no defects. According to certain embodiments, composite materials are fabricated without the use of an autoclave. In some embodiments, composite materials are fabricated in low pressure environments.
Resumen de: CN119095791A
The present invention relates to a method of providing quantitative or qualitative information about the composition of a nanomaterial, such as a graphene-based material, by contacting a plurality of portions of a sample of nanomaterial with a plurality of responsive probes; measuring a property of each of the response probes in the presence of the nanomaterial to provide a plurality of property measurements; and processing the plurality of property measurements to provide qualitative or quantitative information. The invention also relates to a kit for carrying out the above method.
Resumen de: CN119552147A
本发明涉及钠离子电池技术领域。具体的,本发明提供一种用于制备钠离子电池负极材料的氧化石墨烯‑冠醚复合物,以及包含所述氧化石墨烯‑冠醚复合物的钠离子电池负极材料。本发明采用氧化石墨烯为基底,冠醚磺酰胺作为修饰改性媒介,生成稳定的氧化石墨烯‑冠醚复合材料。该复合材料有利于钠离子的嵌入和脱出,并且其中的冠醚能够优先捕获电解液中的Na+,形成Na+—醚基络合物,强化材料表面的吸附储存钠的过程,可以在负极表面原位生成高机械强度和良好柔韧性的固体电解膜,既能防止钠离子与电解液中的溶剂分子发生溶剂化作用,又能减少电解质的反复消耗,提高电极的嵌/脱钠容量,延长电池循环寿命。
Resumen de: CN119551666A
本发明公开了一种高回弹石墨烯发泡膜的制备方法,在传统水合肼发泡的基础上,引入叔丁醇作为调节剂,避免了水合肼快速还原导致石墨烯膜内部孔径分布不均匀的问题,细密的孔结构提升了材料整体的耐压缩性和回弹性。经过后续低温热还原、碳化和石墨化处理,进一步恢复石墨烯共轭结构,赋予多孔膜骨架高压缩回弹性能。所得高回弹发泡膜能够作为相变储热、电池、电容器、热界面等材料的基材,实现高力学性能复合材料的制备。
Resumen de: CN119556413A
本发明涉及一种新能源光缆及其制备方法,属于光缆的技术领域。一种新能源光缆由自内而外依次由光纤、松套管、绝缘层及护套层构成,松套管环绕于若干组光纤的外围,若干组光纤与松套管之间留有间隙,间隙上填充有油膏,绝缘层则覆盖于松套管的外侧,绝缘层由芳纶材料制成;松套管由聚丙烯材料或尼龙材料制成;护套层包覆绝缘层的外侧;护套层包括以下组分:TPU、HDPE、EVA、有机改性石墨烯、增塑剂、抗氧化剂、抗紫外线剂、阻燃剂和引发剂。本发明通过乙烯基硅油接枝氨基苯硫酚,然后与苯甲醛衍生物形成化学键连接并对氧化钛/氧化石墨烯形成包覆,有机改性后的石墨烯能显著提高了护套层的拉伸强度和断裂伸长率和耐高温性能。
Resumen de: CN119551664A
本发明涉及一种石墨烯纳米带/硒化铜半导体异质结构及其制备方法,属于纳米材料技术领域。本发明利用四蒽前驱体在铜基底的催化作用下会发生分子间碳氢活化和分子内环化脱氢的策略,将四蒽前驱体分子沉积在铜表面,并在100℃‑400℃温度下保温30分钟得到一维的石墨烯纳米带。然后将硒粉末沉积在上述石墨烯纳米带和铜基底上,并在100℃‑400℃温度下保温30分钟,利用硒粉末与铜基底发生化学反应生成单层硒化铜半导体的策略,得到石墨烯纳米带/硒化铜半导体异质结构。
Resumen de: CN119560532A
本发明属于电池材料领域,具体涉及一种具有双重维度碳包覆的硅碳负极材料及其制备方法和应用。所述硅碳负极材料包括硅碳复合颗粒;所述硅碳复合颗粒包括碳材料基体颗粒和附着于碳材料基体颗粒上的单质纳米硅;所述碳材料基体颗粒中含有金属纳米粒子;所述碳材料基体颗粒表面包覆有一维的碳纤维,所述单质纳米硅表面包覆有二维的类石墨烯碳层。本发明的关键在于通过在碳材料基体颗粒中预包埋的金属纳米粒子以诱导调控特定碳结构的生成,同时改善硅碳负极材料的离子电导率和电子电导率,从而提高硅碳负极材料的循环性能和容量保持率。
Resumen de: CN119551661A
本发明公开了一种氮掺杂量子点的制备方法及其油藏应用,制备方法是,首先将碳源和氮源搅拌混匀,在水浴加热条件下向混合料中加入烷基胺聚氧乙烯醚,密封搅拌形成浅黄色块状后进行固相热解反应,得到黑色固体产物;将黑色固体产物研磨后分散在正己烷中洗涤;再加入无水乙醇并结合超声波进一步洗涤,得到黑色粉末状产物。将产物溶于去离子水中,过滤提纯,所得黑色液体进行离心分离;将清液进行透析,最后将透析袋内的溶液干燥,得到氮掺杂量子点。用现场注入流体配制成氮掺杂量子点分散液;将分散液注入目标储层,焖井1‑2天,然后开井生产。所述氮掺杂量子点适用于低渗(超低渗)油藏、致密油藏、页岩油藏,经济高效的提高原油采收率。
Resumen de: CN119553163A
本发明公开了一种光电活性铁碳纳米复合材料及其制备方法,涉及复合材料制备技术领域,包括铁盐40~50份、碳材料50~60份、助催化剂5~10份和前驱体1~5份,其中,复合材料分布投放在制备装置中,所述制备装置包括称量单元、混合单元、活性单元和成型单元,所述称量单元的内部设有称重模块与配比模块,所述混合单元的内部设有密封模块、控温/压模块与搅拌模块;所述活性单元的内部设有催化模块;所述成型单元的内部设有模具模块与去除模块,S1、称取原料:通过在称量单元中使用称重模块,分别取出不同分量的铁盐、碳材料和前驱体,并且按照配比模块的计数,将其分别按照5∶4∶2的比例集中到同一容器中。
Resumen de: CN119551734A
本发明提供了一种制备四氧化三铁‑石墨烯磁性异质结构材料的方法及其在定向导热复合材料中的应用,属于复合材料技术领域,所述方法包括以下步骤:(1)将氢氧化钠溶液在水浴条件下缓慢加入三氯化铁溶液制得氢氧化铁凝胶,将所述凝胶依次进行烘干老化、离心、清洗和冷冻干燥得到三氧化二铁纳米晶胞;(2)将三氧化二铁纳米晶胞、石墨烯和盐酸多巴胺加入Tris缓冲液中充分搅拌,经多次离心、清洗和冷冻干燥得到三氧化二铁‑多巴胺‑石墨烯;(3)将三氧化二铁‑多巴胺‑石墨烯进行煅烧还原,得到四氧化三铁‑石墨烯磁性异质结构材料。本发明制得的磁性异质结构材料可作为导热填料应用于制备定向导热复合材料,具有可操作性强、成本低廉等优势。
Resumen de: CN119551668A
本发明属于纳米结构制造技术领域,公开了一种在石墨烯上原位可控制备的金属纳米阵列结构及其制备方法,本发明以硅片为基底,通过机械剥离法在硅基底上制备石墨烯层;再将含原料分子的硅悬臂梁安装在原子力显微镜上对制备的基底进行扫描,生成高分辨率的表面形貌图像,根据形貌图选择平坦且无明显缺陷的位置后,使硅悬臂梁尖端与石墨烯或硅基底表面接触;随后在尖端施加正电压,调整停留时间和载荷使得金属纳米材料在尖端附近沉积下来,形成金属纳米阵列结构。通过该发明可以实现金属颗粒在石墨烯表面的尺寸、形貌、组成、结构和位置的原位可控制造。使其更好地在电子、光学、催化、传感、场发射、显示器件等技术领域推广并应用。
Resumen de: CN119551716A
本发明涉及负极材料制备技术领域,具体涉及一种改性负极材料包覆造粒方法,包括如下步骤:制备锆酸锂,原料焦石墨化,原料焦与锆酸锂混合并进行超细粉碎,预处理,包覆沥青超细粉碎,包覆沥青对原料焦和锆酸锂进行加热包覆造粒,以及在包覆粒料表面高温裂解形成石墨烯。本发明的负极材料以原料焦和沥青为基本原料,利用锆酸锂和石墨烯对材料进行改性,制备过程简单,制备方案清晰明确,通过高温裂解的方法在沥青表面形成石墨烯,可有效提高电极材料的力学和导电性能,通过将锆酸锂与原料焦结合,预锂化处理可有效提高电极材料的首次放电效率,强化电极材料的循环性能,有效提高电极材料的使用效果。
Resumen de: CN119551663A
本发明涉及一种宽带隙的氮原子掺杂的非苯型石墨烯纳米带的制备方法,属于表面合成技术领域。本发明利用1,8‑二溴‑9H‑咔唑前驱体分子在金衬底的催化作用下会发生分子内脱卤偶联和环化脱氢的策略,将1,8‑二溴‑9H‑咔唑前驱体分子沉积在金衬底表面,并在200℃温度下保温20‑40分钟,接着将所述样品冷却至室温,得到一维聚合链。然后将一维分子链样品在400℃温度下保温20‑40分钟,得到氮原子掺杂的非苯型石墨烯纳米带。所制备的氮原子掺杂的非苯型石墨烯纳米带有3.55电子伏特的带隙,属于宽带半导体。
Resumen de: AU2023303876A1
The invention relates to uses of an amorphous carbon which is produced from a method based on a carbonisation and distillation process for the material treatment of carbon-containing raw materials and which has a structure of a three-dimensional arrangement of carbon nanoparticles as agglomerates. The carbon is intended for medical use as a thermal and/or fireproof and/or radiation-resistant insulating material, as a filter element, as a storage element, or for the production of plant products or for planting in areas where water is scarce. The invention also relates to a storage device (40) that acts as an electrical energy store in the form of a double-layer capacitor having a symmetrical structure with, from the outside towards the inside, a housing (41) and a collector (42) having an electrode (43) in the form of a carbon layer and a separator (44) having an electrolyte. The carbon layer is formed from an amorphous carbon which is produced using the method for the material treatment of carbon-containing raw materials and which has the structure of the three-dimensional arrangement of carbon nanoparticles as agglomerates.
Resumen de: CN119529802A
本发明涉及稠油乳化降黏开采技术领域,公开了一种复合降黏剂及其制备方法和应用、一种稠油采出液响应性破乳的方法,该复合降黏剂中含有环糊精基表面活性剂、水以及改性氧化石墨烯;所述改性氧化石墨烯包含氧化石墨烯和接枝的聚氧乙烯链,所述聚氧乙烯链的化学式为‑CH2CH(OH)CH2O(CH2CH2O)nCH2CH2OH,n选自3‑20的任意整数;所述环糊精基表面活性剂含有‑OSO3Na、‑OH基团。本发明的改性氧化石墨烯具有优良的耐盐性能和界面性能,与环糊精基表面活性剂用于复合降黏剂中,能够显著提高降黏剂对稠油的乳化降黏效果。同时,利用复合降黏剂具有的pH响应性位点,实现油水乳状液的CO2响应性破乳。
Resumen de: CN119529319A
本发明涉及一种基于碳点交联构筑的水凝胶及其制备方法和应用,其制备方法包括以下步骤:在水溶液体系中将含活性羰基的碳点和含胺基的有机高分子化合物混合后进行交联反应,得到自愈水凝胶;本发明的制备方法工艺简单,周期短,产量高,大大降低了自愈水凝胶的生产成本,有利于工业化生产;制备得到的自愈水凝胶可以在医药领域和化妆品领域具有良好应用。
Nº publicación: CN119528121A 28/02/2025
Solicitante:
北京宇航系统工程研究所哈尔滨工业大学
Resumen de: CN119528121A
一种酞菁树脂基纳米碳球及其制备方法,涉及纳米碳材料领域,所述方法为:在酞菁树脂单体中加入组分A,高温搅拌反应得到酞菁树脂预聚体;所述组分A包括催化剂、有机硅烷、磁性金属盐;将酞菁树脂预聚体加入离子液体中,并加入乳化剂,高温搅拌固化后得到酞菁树脂纳米球;将酞菁树脂纳米球置于管式炉或马弗炉中,在惰性气氛下,以一定的升温速率升温至碳化温度,经一定时间高温碳化后得到纳米碳球。该方法制备工艺简单,条件温和,所制备的纳米碳球元素组成、粒径大小、比表面积、孔径分布均可通过制备工艺进行调控,可广泛用于吸附分离、能源储存、催化载体、电磁波吸收、生物医学领域。