Resumen de: CN120136090A
本发明公开了一种石墨烯基气凝胶及其快速制备方法与应用,包括如下步骤:将铁盐和有机配体进行溶剂热反应,制得前驱体;将前驱体在惰性气氛中煅烧,获得MOF衍生的Fe3O4@C纳米棒;将氧化石墨烯、抗坏血酸和Fe3O4@C纳米棒按质量比为1‑7:2‑14:2‑5合均匀,然后通过水热反应,制的rGO水凝胶;将rGO水凝胶完全冷冻后,再解冻;将解冻后的rGO水凝胶干燥,即得rGO气凝胶。该材料的制备过程同时具备快速凝胶和快速干燥的特点,在气凝胶制备的两个关键过程中均能加快速度,进而提高生产效率并降低生产成本。
Resumen de: CN120138974A
本发明公开了一种氮掺杂石墨烯碳材料的制备方法和应用,该方法包括以下步骤:准备石墨烯粉末、尿素、氧化锆磨球,并加入乙醇进行混合,混合完成后进行离心分离以及真空干燥,得到预掺杂石墨烯粉末;通入Ar和H2进行高温退火,退火完成后通入NH3、Ar混合气,补充吡啶氮;将基布材料按孔隙率划分,并获得造孔剂的添加量,根据造孔剂的添加量获得结合剂其他各成分的含量,并制备结合剂;制备烯碳母液,并将结合剂加入烯碳溶液中制备烯碳混合液。本发明通过制备结合剂并加入烯碳溶液,显著提高了不同孔隙率基布与烯碳溶液的结合强度。
Resumen de: KR20250086452A
본 발명은 미량의 호흡 가스를 고감도로 측정할 수 있는 가스 센서에 관한 것으로, 구체적으로는 기판, 상기 기판 상에 이격 형성되는 한 쌍의 전극 및 상기 기판 상에 형성되어 상기 한 쌍의 전극과 전기적으로 연결되며, 나노 복합체를 포함하는 가스 감지층을 포함할 수 있다.
Resumen de: CN120136081A
本发明公开了一种食用菌渣碳纳米材料及其制备方法与应用,旨在提供一种具有高活性、高稳定性、能以极少的用量并配合4‑AAP和TMB等试剂实现对水体中酚类的检测和鉴别的材料,用于检测酚类污染物;该材料通过下述方法制备:(1)将菌渣粉末加热到250‑300℃保持2~3h,反应结束后研磨至粉末状得到预碳化产物粉末;(2)向预碳化产物粉末、NaOH中加入水溶解,在60~80℃下搅拌后至啫喱状并烘干至粉末;(3)将粉末加热到700~800℃并保持1~3h,反应结束后将其用研钵研磨至粉末状得到粗生物炭;(4)将粗生物炭酸洗,水洗至中性并研磨得到活化生物炭粉末;(6)向活化生物炭粉末加入乙醇溶解;然后在160~200℃进行水热16~18h,冷却后依次进行离心、抽滤,收集滤渣,离心干燥即得;属于化合物检测技术领域。
Resumen de: WO2025121580A1
The present invention relates to: an electrochemical biosensor capable of effectively and sensitively detecting alfuzosin; an electrode applied thereto; a metal-organic framework (MOF) which includes a zinc/cobalt oxide and is applied in manufacturing the electrode; and methods for manufacturing same.
Resumen de: CN120136080A
本发明公开了一种以松木锯末为原料的生物质碳量子点的制备及其在微藻培养中的应用方法。该方法通过碱辅助氧化工艺合成高产率的生物质碳量子点,其蓝光发射特性与微藻光合系统II(PSII)吸收光谱相匹配。具体步骤包括:将松木锯末预处理后进行水热反应制备松木衍生水热炭,再通过NaOH和H2O2对水热炭进行碱性氧化剥脱提取碳量子点。制备得到的生物质碳量子点具有高产率、优异的光学性能、良好的水溶性和生物相容性。在微藻培养中,适量添加该碳量子点可显著提升微藻的生物量浓度以及蛋白质和脂质的合成效率,为废弃物资源化及微藻高值化培养提供了高效、环保的解决方案。
Resumen de: WO2025121580A1
The present invention relates to: an electrochemical biosensor capable of effectively and sensitively detecting alfuzosin; an electrode applied thereto; a metal-organic framework (MOF) which includes a zinc/cobalt oxide and is applied in manufacturing the electrode; and methods for manufacturing same.
Resumen de: AU2023394105A1
A method for forming luminescent centres (e.g. T centres) on silicon substrates, the method comprising providing a substrate (e.g. silicon on insulator substrate); forming a device layer on the substrate by providing or forming a first silicon layer, forming an interfacial layer on the first silicon layer by delta doping of carbon atoms, and forming a second silicon layer on the interfacial layer; applying a first annealing process to the device layer to distribute carbon atoms within the device layer; introduce hydrogen atoms into the device layer; and applying a second annealing process to form luminescent centres within the device layer. In some embodiments, a superlattice structure is formed in the device layer with a plurality of alternating silicon layers and interfacial layers.
Resumen de: US2025186964A1
This specification relates to an apparatus and a method for producing catalyst particles as well as a high-aspect-ratio molecular structure network. The apparatus comprises a flow reactor and a laminar injector configured to introduce a catalyst particle precursor into the flow reactor. The laminar injector comprises a temperature-controlled flow straightener arranged upstream of the flow reactor.
Resumen de: US2025186524A1
A method of preparing a carbon quantum dots (CD) and Moringa oleifera silver nanoparticle (CD-MOE-AgNP) composition includes providing a Moringa oleifera extract, combining the Moringa oleifera extract with silver nitrate to provide silver nanoparticles, and combining the silver nanoparticles with the carbon quantum dots (CD) to provide the CD-MOE-AgNP composition. In an embodiment, combining the carbon quantum dots (CD) with the Moringa oleifera silver nanoparticle (CD-MOE-AgNP) composition can include ultra-sonification of the carbon quantum dots (CD) with the Moringa oleifera silver nanoparticles.
Resumen de: US2025187920A1
A method for synthesizing nitrogen-doped carbon quantum dots. The method includes reacting a mixture of a fruit waste material, a nitrogen source, and deionized water hydrothermally in an autoclave at a reaction temperature in a range of 150° C. to 250° C. to form a nitrogen-doped carbon quantum dot containing suspension. The method includes centrifuging the carbon quantum dot containing suspension to separate the nitrogen-doped carbon quantum dots from a hydrochar. The method includes filtering the nitrogen-doped carbon quantum dot containing suspension to obtain the nitrogen-doped carbon quantum dots. The nitrogen-doped carbon quantum dots have a size ranging from 1 to 5 nanometers (nm). The nitrogen-doped carbon quantum dots have a Stokes shift of at least 140 nm at an excitation wavelength of 300-420 nm.
Resumen de: EP4567952A2
A conductive material dispersion containing a conductive material containing carbon fibers, a dispersant, and a dispersion medium, in which the dispersant contains a copolymer A containing a nitrile group-containing structural unit and an aliphatic hydrocarbon structural unit, and a Mooney viscosity (ML<sub>1+4</sub>, 100°C) of the copolymer A is 40 to 70, and the conductive material dispersion has a phase angle of 19° or greater at a frequency of 1 Hz.
Resumen de: EP4566706A1
A carbon nanotube production system according to embodiments of the present disclosure includes: a reactor configured to generate a carbon nanotube fluid in a first direction; a conveyor unit which is arranged spaced apart from the reactor in the first direction, and comprises a mesh belt configured to capture carbon nanotube structures from the carbon nanotube fluid while continuously traveling in a second direction perpendicular to the first direction; and a collection unit configured to collect carbon nanotube units from the carbon nanotube structures. Further disclosed herein is a method for producing nanocarbon tubes, as well as a method for producing carbon nanotubes comprising a step of applying the system for producing carbon nanotubes as disclosed herein.
Resumen de: EP4234023A2
Discrete, individualized carbon nanotubes having targeted, or selective, oxidation levels and/or content on the interior and exterior of the tube walls are claimed. Such carbon nanotubes can have little to no inner tube surface oxidation, or differing amounts and/or types of oxidation between the tubes' inner and outer surfaces. These new discrete carbon nanotubes are useful in plasticizers, which can then be used as an additive in compounding and formulation of elastomeric, thermoplastic and thermoset composite for improvement of mechanical, electrical and thermal properties.
Resumen de: WO2024070397A1
The present invention provides a carbon nanotube dispersed liquid which exhibits excellent dispersion stability of single-walled carbon nanotubes. A carbon nanotube dispersed liquid according to one embodiment of the present invention contains single-walled carbon nanotubes, carboxymethyl cellulose and/or a salt thereof, and water; and the content of the single-walled carbon nanotubes is 0.47 to 1.00% by mass. The carboxymethyl cellulose and/or a salt thereof contains at least one kind that has a degree of etherification of 0.65 to 0.85 and a weight average molecular weight of 120,000 to 250,000. The content of the carboxymethyl cellulose and/or a salt thereof is 120 to 220 parts by mass relative to 100 parts by mass of the single-walled carbon nanotubes.
Resumen de: CN120117596A
本发明属于碳材料技术领域,具体涉及一种杂原子掺杂还原氧化石墨烯材料及其制备方法和应用。该方法采用循环伏安法,在硫酸盐的溶液中对工作电极进行预氧化处理;在含杂原子的溶液中对所述预氧化处理后的工作电极进行氧化还原反应,得到杂原子掺杂还原氧化石墨烯材料;所述工作电极为碳材料;所述杂原子包括氮原子、氟原子、硫原子和硼原子中的一种或几种。该方法反应条件温和、操作简单、可调控性强,不会发生副反应,制备的杂原子掺杂还原氧化石墨烯材料具有高电化学性能和催化活性。
Resumen de: CN120117597A
本发明属于石墨烯材料技术领域,具体涉及一种低温等离子体剥离氧化石墨烯薄片的方法。本发明将低温等离子体的放电电极置于氧化石墨烯的水分散液的液面上方,利用低温等离子体放电电离气体产生的气体等离子体射流对氧化石墨烯进行接触改性,得到氧化石墨烯薄片的水分散液。本发明利用低温等离子体电离气体产生气体等离子体射流,其含有·OH等活性粒子和高能电子,可与氧化石墨烯(GO)表面发生化学反应,改变GO表面的化学性质,从而实现溶液中GO的剥离,生成氧化石墨烯薄片,并且增加氧化石墨烯薄片的·OH官能团,提高其亲水性,延长氧化石墨烯薄片的水分散液的保存时间,有效保存时间可达3个月。
Resumen de: CN120117663A
本申请涉及一种钴基化合物复合材料及其制备方法和应用,属于材料合成技术领域。本申请的钴基化合物复合材料的制备方法,包括以下步骤:将络合剂和钴源溶于水中,搅拌均匀,再加入硫源,剧烈搅拌,得到前驱体溶液;将自支撑材料加入前驱体溶液中,一锅水热法得到钴基化合物复合材料。本申请具有操作简便、溶剂绿色、原料价格低廉和易重复等特点,可推广至多种金属前驱体(非贵金属及贵金属)和多种自支撑材料材料(碳基和非碳基材料),制备过程简单且适用于大规模生产,在电催化、光催化、电子科学等领域具有重要的研究意义。
Resumen de: CN120117592A
本发明公开了一种用于电磁屏蔽的二维烯碳材料制备及成型工艺,涉及电磁屏蔽的二维烯碳材料领域,该方法包括以下步骤:对前驱体MAX材料进行气相刻蚀和等离子高温处理,并将处理完成的二维烯碳材料研磨成烯碳粉末;获取需要满足的电磁屏蔽效能指标,并根据历史数据建立浓度-屏蔽效能关系模型,得到烯碳溶液的制备浓度;准备非离子表面活性剂、PVP K30、乙醇、氨水、KH550、PEG 400、制备分散混合剂以及表面喷涂剂;本发明通过构建浓度-屏蔽效能关系模型,能够精准确定烯碳溶液的制备浓度,为后续烯碳粉末添加范围提供有力支撑,确保成品电磁屏蔽性能达标。
Resumen de: CN120117593A
一种集流体活性材料及其制备方法和应用,涉及电化学储能技术领域。包括以下步骤:将酸、铌前驱体和苯胺溶解于水中形成溶液A;过硫酸铵溶解于水中形成溶液B,将B加入A中混合均匀然后静置反应,随后抽滤、干燥得到铌掺杂聚苯胺碳纳米管,然后将其在保护气氛中热处理,得到嵌入五氧化二铌纳米颗粒的无定形碳纳米管,可用于制备无负极钠金属电池集流体和无负极钠金属电池。本发明可单批次宏量制备百克甚至千克级超细的嵌入五氧化二铌纳米颗粒的无定形碳纳米管,锚定于碳管内的Nb2O5纳米颗粒通过可逆的插层赝电容反应,显著增强钠离子迁移速率,使钠离子优先吸附,大幅降低形核过电势,组装的无负极钠金属全电池显示出极高的容量保持率。
Resumen de: CN120117653A
本发明涉及一种五氧化二铌/碳复合负极材料的制备方法及其储能应用,属于锂离子电池材料技术领域。所述方法包括:将草酸铌铵盐溶解于有机溶剂中形成均相溶液,加入聚合物等后经连续加热搅拌制备纺丝前驱液;通过静电纺丝技术制备含铌有机纤维;将所述纤维在惰性气氛下进行程序化加热处理,最终获得五氧化二铌/碳复合结构负极材料。该制备工艺通过分子级前驱体设计,并结合静电纺丝‑热解技术,实现了五氧化二铌与碳导电基体的原位复合,形成三维连续导电网络结构。所得复合材料作为锂离子电池负极时,展现出高比容量、优异倍率性能、长循环稳定性。本发明具有工艺简洁高效、产物纯度可控、原料利用率高等特点,且无需复杂后处理设备,符合绿色化学要求,具备显著的产业化应用价值。
Resumen de: CN120117594A
本发明公开一种煤沥青基碳纳米笼、制备方法及应用,属于材料合成和储能应用技术领域。本申请以煤沥青为碳源,以具有三维介观结构的金属氧化物为模板,通过旋蒸工艺实现煤沥青在模板表面的均匀包覆,结合溶剂极性调控与梯度碳化策略,借助毛细效应定向优化材料微孔及小介孔孔容分布。所制备的煤沥青基碳纳米笼兼具高表面积、优异导电性和电解液亲和性,作为超级电容器电极材料实现了能量密度与功率密度的协同提升。由于煤沥青具有来源广泛、价格低廉的优势,不仅能显著降低碳纳米笼的制备成本,还实现了煤沥青资源的高附加值转化,为碳基功能材料的规模化制备提供了创新路径。
Resumen de: CN120118025A
本发明公开了一种D‑A构型的单分子石墨烯量子点为N‑GQD,分子结构为核心完全共轭结构,含有42个sp2共轭碳原子,边缘带有吡啶基团,与共轭中心组成D‑A构型;其结构确定、尺寸均一,在水溶液中分散性良好有着良好的物理化学性质。本发明还提供了其制备方法:以3’‑溴苯乙酮和4‑溴苯乙酸为原料,通过自身缩合反应、Diels‑Alder反应、环合加成反应、Suzuki偶联反应、Scholl氧化等反应可控合成边缘吡啶修饰的石墨烯量子点N‑GQD。本发明解决了精确结构的石墨烯量子点水溶性差,易于聚集等缺点,具有独特的D‑A结构,其作为光动力、声动力多功能作用的材料,实现了生物医学临床应用突破,经MTT细胞实验表明抗肿瘤治疗效果显著。
Resumen de: CN120117835A
本申请提出一种纳米多孔碳包覆的玻璃粉及其制备方法和太阳能电池银浆,以高度的分散均一性和较理想的收率制备了含纳米多孔碳包覆的玻璃粉,在制备过程中,不仅保证了体系中玻璃粉达到微米级的较高要求,同时纳米多孔碳吸附于玻璃粉表面,避免了玻璃粉颗粒的团聚。采用本发明方法制备出的含纳米多孔碳包覆的玻璃粉具有较好的粒径分布,容易制备,不易团聚,从而使其在丝网印刷过程中更容易透过窄线宽网版,进而提升窄线宽印刷效果;同时,在高温烧结过程中,纳米多孔碳能在界面形成良好的欧姆接触,从而提高太阳能电池转换效率。
Nº publicación: CN120094506A 06/06/2025
Solicitante:
SK\u65B0\u6280\u672F\u682A\u5F0F\u4F1A\u793E
Resumen de: US2025178906A1
A carbon nanotube production system according to the present disclosure includes a reactor configured to generate a carbon nanotube fluid in a first direction; a conveyor unit which is arranged spaced apart from the reactor in the first direction, and comprises a mesh belt configured to capture carbon nanotube structures from the carbon nanotube fluid while continuously traveling in a second direction perpendicular to the first direction; and a collection unit configured to collect carbon nanotube units from the carbon nanotube structures.