Resumen de: AU2024210539A1
In this water electrolysis system, an alternating current (AC)-side connection end of a power converter is connected to an AC power system, at least one electrolytic stack and a series circuit configured by connecting the at least one electrolytic stack to a circuit breaker is connected to a direct current (DC)-side connection end of the power converter, before disconnecting the electrolytic stack from the series circuit, a controller reduces the power flowing to the DC-side connection end while controlling the speed at which the power converter reduces the power flowing to the DC-side connection end to a speed at which a difference from the reference value of the voltage amplitude of the AC power system is less than a predetermined value, and when the circuit breaker reaches a power sufficient to disconnect the internal DC circuit, the controller disconnects the circuit breaker connected to the DC circuit to disconnect the electrolytic stack from the series circuit.
Resumen de: AU2025204790A1
SYSTEM AND METHOD FORO CARBON DIOXIDE REACTOR CONTROL A system preferably including a carbon dioxide reactor. A method for carbon dioxide reactor control, preferably including selecting carbon dioxide reactor aspects based on a desired output composition, running a carbon dioxide reactor under controlled process conditions to produce a desired output composition, and/or altering the process conditions to alter the output composition. SYSTEM AND METHOD FORO CARBON DIOXIDE REACTOR CONTROL A system preferably including a carbon dioxide reactor. A method for carbon dioxide reactor control, preferably including selecting carbon dioxide reactor aspects based on a desired output composition, running a carbon dioxide reactor under controlled process conditions to produce a desired output composition, and/or altering the process conditions to alter the output composition. un u n s y s t e m p r e f e r a b l y i n c l u d i n g a c a r b o n d i o x i d e r e a c t o r m e t h o d f o r c a r b o n d i o x i d e r e a c t o r c o n t r o l , p r e f e r a b l y i n c l u d i n g s e l e c t i n g c a r b o n d i o x i d e r e a c t o r a s p e c t s b a s e d o n a d e s i r e d o u t p u t c o m p o s i t i o n , r u n n i n g a c a r b o n d i o x i d e r e a c t o r u n d e r c o n t r o l l e d p r o c e s s c o n d i t i o n s t o p r o d u c e a d e s i r e d o u t p u t c o m p o s i t i o n , a n d o r a l t e r i n g t h e p r o c e s s c o n d i t i o n s t o a l t e r t h e
Resumen de: US2025230563A1
The present invention relates to an electrocatalyst comprising a Cu substrate coated with a 3D TiO2/Cu microrods array decorated with nanoparticles of a noble metal, preferably Ru nanoparticles, an electrochemical cell comprising said electrocatalyst and their use for hydrogen production via hydrogen evolution reaction (HER) in basic conditions. The present invention also refers to an in-situ process for the preparation of said electrocatalyst and simultaneous production of hydrogen. The present invention also refers to a process for producing hydrogen which utilizes the electrochemical cell comprising the electrocatalyst according to the invention.
Resumen de: US2024395434A1
A reactor block to extract hydrogen from water includes a first opening configured to receive gasified water, a second opening, and a reactor plate. A channel is formed in the reactor plate and disposed in a fluid path between the first opening and the second opening and a radioactive coating is applied to the channel. The second opening is configured to eject hydrogen generated by radiolysis of at least a portion of the gasified water received at the first opening and passed through the channel to the second opening.
Resumen de: CN119604997A
The invention relates to: a bipolar plate (1); and an electrochemical cell (12) comprising a plurality of such bipolar plates (1, 1 '). The bipolar plate (1) comprises a first half plate (1a) and a second half plate (1b) which are fixedly connected with each other, the bipolar plate (1) is provided with a plurality of fluid channel openings (2), and the fluid channel openings comprise fluid inlet openings (2a, 2c and 2e) and fluid outlet openings (2b, 2d and 2f); on both sides of the bipolar plate (1) there are a first distributor field (3) for distributing the fluid, an active field (4) and a second distributor field (5) for distributing the fluid. At least one seal (6, 6 ') is also present on each side of the bipolar plate (1), the seals (6, 6') being positioned one above the other in at least one transition region (7) between the fluid channel opening (2) and the adjacent distributor field (3, 5) as seen perpendicularly to the plane of expansion of the bipolar plate (1) and being reinforced by embossing structures (9a, 9b).
Resumen de: US2023373882A1
The invention relates to a process, catalysts, materials for conversion of renewable electricity, air, and water to low or zero carbon fuels and chemicals by the direct capture of carbon dioxide from the atmosphere and the conversion of the carbon dioxide to fuels and chemicals using hydrogen produced by the electrolysis of water.
Resumen de: AT527859A1
Elektrolyseur zur alkalischen Wasserstoffelektrolyse, umfassend eine Gleichspannungsquelle, insbesondere einen Gleichrichter (1) mit einem elektrischen Plus-Pol (2) und einem elektrischen Minus-Pol (3), sowie Medienzuleitungen (4) für ein Elektrolysemedium und Medienableitungen (5) für Produktmedien, wobei zwischen dem Plus-Pol (2) und dem Minus-Pol (3) mehrere, über elektrische Verbindungsleitungen (9) in Serie geschaltete Elektrolyseblöcke (6) angeschlossen sind, wobei die Elektrolyseblöcke (6) jeweils eine Vielzahl elektrisch in Serie geschalteter und bündig mechanisch verspannter Elektrolysezellen (7) aufweisen, wobei die Medienzuleitungen (4) und die Medienableitungen (5) jeweils seriell durch die Elektrolyseblöcke (6) verlaufen und sich innerhalb jedes einzelnen Elektrolyseblocks (6) auf individuelle Zellzuleitungen (4‘, 4‘‘) und individuelle Zellableitungen (5‘, 5‘‘) der Elektrolysezellen (7) verteilen.
Resumen de: JP2025106288A
【課題】水素を生成する方法を提供する。【解決手段】水素を生成する方法は、燃料を含む第1のストリームを装置に導入すること、水を含む第2のストリームを装置に導入すること、第2のストリーム中の水を水素に還元すること、および水素を装置から抽出することを含む。第1のストリームおよび第2のストリームは、装置内で互いに接触しない。【選択図】図6B
Resumen de: WO2025146950A1
The present invention relates to a system for producing hydrogen while interworking with a nuclear power plant, the system comprising: a water electrolysis facility for producing hydrogen and oxygen by using vapor supplied from a nuclear power plant; and a power supply controller for selecting at least one reactor module from multiple reactor modules for hydrogen production by the water electrolysis facility, and selecting at least one from multiple generators or power grids such that power is supplied therefrom to the water electrolysis facility. According to an embodiment, power and hydrogen can be simultaneously produced. Particularly, hydrogen can be produced continuously in an economical and effective manner by selecting an optimal reactor module from multiple reactor modules for hydrogen production and by selecting an optimal power supply source from various power sources.
Resumen de: AU2023359478A1
The invention relates to a method for joining a stack of elements together, the method comprising the steps of: individually joining subassemblies of the elements together; joining the subassemblies together by arranging a joint between each subassembly to form the stack of elements; applying consecutive phases of heating and cooling to the stack of elements while applying at least one clamping action to the stack of elements between two different phases of heating and cooling.
Resumen de: CN118461072A
The invention discloses an electrolytic hydrogen production system and a control method thereof. The electrolytic hydrogen production system comprises a plurality of electrolytic cells, the control method comprises the following steps: acquiring a state code of each electrolytic cell; the state code reflects the state information of the electrolytic cell; and controlling the hydrogen production capacity of each electrolytic cell according to each state code. According to the technical scheme, intelligent control over the electrolytic hydrogen production system is achieved, the hydrogen production capacity of all the electrolytic cells is reasonably distributed, and therefore the electrolytic hydrogen production system is in the optimal operation state all the time, and the stability of the electrolytic hydrogen production system and the electrolytic hydrogen production efficiency can be improved.
Resumen de: AU2023303893A1
An estimation system for estimating current efficiency of an electrolyser comprises a data processing system (105) for computing heat loss of the electrolyser based on specific heat capacity of electrolyte, a flow rate of the electrolyte in a cathode side of the electrolyser, a flow rate of the electrolyte in an anode side, a temperature difference (T1c - T0c) between electrolyte circulation outlet and inlet of the cathode side, and a temperature difference (T1a - T0a) between electrolyte circulation outlet and inlet of the anode side. The current efficiency is estimated based on a difference between electric power supplied to the electrolyser and the computed estimate of the heat loss, and on a product of thermoneutral voltage of electrolysis cells of the electrolyser and electric current supplied to the electrolyser.
Resumen de: US2025223539A1
A method for optimal production of methane from a storage horizon configured as an underground bioreactor, the method including obtaining environmental data for a renewable energy facility that produces hydrogen and obtaining process data from an industrial facility that produces carbon dioxide. The method further includes injecting the produced hydrogen, the produced carbon dioxide, and a selection of microbes, the selection defined by a set of microbe parameters, into the bioreactor. The bioreactor produces a quantity of methane that is controlled by, at least in part, a set of operation parameters. The method further includes determining, with a composite artificial intelligence model, a predicted methane production from the bioreactor based on the environmental data, the process data, the set of microbe parameters, and the set of operation parameters and adjusting, automatically, the set of operation parameters and the set of microbe parameters to optimize methane production.
Resumen de: AU2023285998A1
The present invention provides a portable 12-volt system for cooking/heating, utilising hydrogen gas. The said stove runs from a 12-volt battery supply, hydrogen is not stored - the gas is only produced on demand. The concept developed is a one-off functional prototype to demonstrate proof of concept. The proof of concept demonstrates the ability to produce hydrogen gas flames from a 12-volt power source, to be used as a cooking or heating output. The accompanied drawings are the latest iteration post physical prototype development. The present invention provides a portable 12-volt system for cooking/heating, utilising hydrogen gas. The said stove runs from a 12-volt battery supply, hydrogen is not stored - the gas is only produced on demand. The concept developed is a one-off functional prototype to demonstrate proof of concept. The proof of concept demonstrates the ability to produce hydrogen gas flames from a 12-volt power source, to be used as a cooking or heating output. The accompanied drawings are the latest iteration post physical prototype development. ec h e p r e s e n t i n v e n t i o n p r o v i d e s a p o r t a b l e - v o l t s y s t e m f o r c o o k i n g h e a t i n g , u t i l i s i n g h y d r o g e n g a s h e s a i d s t o v e r u n s f r o m a - v o l t b a t t e r y s u p p l y , h y d r o g e n i s n o t s t o r e d - t h e e c g a s i s o n l y p r o d u c e d o n d e m a n d h e c o n c e p t d e v e l o p e d i s a o n e - o f f f u n c t i o n a
Resumen de: AU2024211141A1
The invention provides an electrolyser system (10) comprising a heat storage unit (14) and an electrolyser (16). The heat storage unit (14) comprises at least one heat source infeed. The electrolyser (16) comprises at least one electrolyser cell (20), a steam inlet and at least one off-gas outlet. The off-gas outlet is connected to the heat source infeed to heat the heat storage unit (14). The heat storage unit (14) is configured to use its stored heat to produce steam for feeding into the steam inlet and for generating electrical power, either one at a time or both at the same time. The invention also provides a system comprising an intermittent or variable electricity source (12) and an electrolyser system (10) as defined above. The intermittent or variable electricity source (12) can be configured to power the electrolyser (16) and to heat the heat storage unit (14) via a heating element, either both at the same time or individually.
Resumen de: JP2024023781A
To provide a hydrogen production cell of which a thickness per cell is reduced as compared with a conventional one.SOLUTION: A hydrogen side current collector 12 and an oxygen side current collector 13 are arranged on both sides of an electrolyte membrane 11. A separator 14 with a flat surface is arranged outside the hydrogen side current collector 12. A flow passage forming plate 15 and a separator 16 are arranged outside the oxygen side current collector 13. Since a flow passage dedicated for collecting water and a hydrogen gas generated when electrolysis is performed is not formed between the hydrogen side current collector 12 and the separator 16, the thickness of the cell itself can be reduced. These reaction fluids generated during the electrolysis are discharged from the inside of the hydrogen side current collector 12.SELECTED DRAWING: Figure 3
Resumen de: US2025223163A1
A highly crystalline mesoporous sulphur functionalized carbon nitride and a process for producing the same. The process including the steps of: providing a carbon nitride precursor material; mixing the carbon nitride precursor material with a metal salt to form a first mixture; and, thermally treating the first mixture to produce the crystalline carbon nitride.
Resumen de: WO2025147215A1
The present disclosure relates to a bipolar hydrogen production system and a method for producing hydrogen gas from the bipolar hydrogen production system. The system comprises a silver-based anodic catalyst deposited on an anode electrode, a cathode electrode, and an alkaline electrolyte containing an organic compound with aldehyde functional group extracted from lignocellulosic biomass waste or an aldehyde-containing chemical compound extracted from chemical waste.
Resumen de: WO2025146950A1
The present invention relates to a system for producing hydrogen while interworking with a nuclear power plant, the system comprising: a water electrolysis facility for producing hydrogen and oxygen by using vapor supplied from a nuclear power plant; and a power supply controller for selecting at least one reactor module from multiple reactor modules for hydrogen production by the water electrolysis facility, and selecting at least one from multiple generators or power grids such that power is supplied therefrom to the water electrolysis facility. According to an embodiment, power and hydrogen can be simultaneously produced. Particularly, hydrogen can be produced continuously in an economical and effective manner by selecting an optimal reactor module from multiple reactor modules for hydrogen production and by selecting an optimal power supply source from various power sources.
Resumen de: AU2023417560A1
A small scale high-pressure electrolyzer for generating hydrogen and oxygen is provided comprising one or more units each comprising a plurality of high-pressure electrolytic cells, wherein the electrolytic cells of each unit are electrically connected in series, as well as a central electrolyt header, functionally connected to each electrolytic cell for the supply of liquid electrolyt to the cell; a central hydrogen header connected to each electrolytic cell for the discharge of generated hydrogen from the cell; a central oxygen header connected to each electrolytic cell for the discharge of generated oxygen from the cell; a direct current power source for the power supply to each unit of serially connected electrolytic cells; wherein the units of serially connected electrolytic cells are electrically connected in parallel.
Resumen de: DK202370641A1
0083 Disclosed is an electrolysis cell element (1) comprising, a support structure (2) comprising an inner aperture (3), and a bipolar plate (4) being suspended in the inner aperture (3). The support structure (2) comprises a structure core (5) and a coating (6), wherein the coating (6) includes a thermoplastic material at least partly enclosing the structure core (5) and wherein the bipolar plate (4) is suspended in the inner aperture (3) by means of the coating (6). 0084 An electrolysis cell stack (10) and use of an electrolysis cell stack (10) is also disclosed.
Resumen de: US2025223707A1
Provided is a power generation system (100) comprising: a gas turbine (10) for combusting air compressed by a compressor (11) and a fuel gas using a combustor (12) to generate combustion gas and drive a turbine (13) and a compressor connected to the turbine using the combustion gas; a heat storage structure (30) heated by the combustion gas with which the turbine is driven; a boiler (40) for generating steam using heat stored in the heat storage structure (30); and a solid oxide electrolytic cell (50) having a hydrogen electrode (51), an oxygen electrode (52), and an electrolyte layer (53) positioned between the hydrogen electrode and the oxygen electrode, the solid oxide electrolytic cell (50) supplying steam generated by the boiler (40) to the hydrogen electrode (51) to generate hydrogen through steam electrolysis.
Resumen de: US2025223714A1
Provided are a proton conductor 2 obtained by molding a solid electrolyte ceramic using hydrogen ions or ions containing hydrogen as charge carriers into a flat plate shape or a curved surface shape; a pair of hydrogen permeable electrode bodies 31 and 32 that have hydrogen permeability and conductivity and are formed of a solid that is airtight to gases other than hydrogen, and are arranged so as to sandwich the hydrogen ion conductive solid; a pair of media 41 and 42 arranged so as to sandwich the proton conductor 2 and the pair of hydrogen permeable electrode bodies 31 and 32; and a power supply 5 that applies a voltage between the pair of hydrogen permeable electrode bodies 31 and 32 to induce a current.
Resumen de: US2025223713A1
An electrochemical cell for a high-pressure electrolyzer contains a closed cell frame made of a high-pressure-resistant first material; an electrochemical reaction region, which is arranged completely inside the cell frame and contains an anodic half-cell and a cathodic half-cell; a gap, which spatially separates the reaction region from the cell frame; and a second material introduced into the gap. The second material is an electrical insulator, and the second material has a lower diffusion coefficient with respect to the entry of foreign ions into the reaction region. A plurality of the electrochemical cells are used to form a cell stack and the cell stack is used to form a high-pressure electrolyzer.
Nº publicación: US2025223546A1 10/07/2025
Solicitante:
KIVERDI INC [US]
Kiverdi, Inc
Resumen de: US2025223546A1
Microorganisms and bioprocesses are provided that convert gaseous substrates, such as renewable H2 and waste CO2 producer gas, or syngas into high-protein biomass that may be used directly for human nutrition, or as a nutrient for plants, fungi, or other microorganisms, or as a source of soil carbon, nitrogen, and other mineral nutrients. Renewable H2 used in the processes described herein may be generated by electrolysis using solar or wind power. Producer gas used in the processes described herein may be derived from sources that include gasification of waste feedstock and/or biomass residue, waste gas from industrial processes, or natural gas, biogas, or landfill gas.