Resumen de: WO2024095217A1
A method and system for producing renewable energy in a programmed manner and the production of "green" hydrogen by creating power plants that have a non-programmable renewable energy production power and are connected to the grid with a connection capable of transporting only one fraction of the total installed power, creating a funnel effect in which the energy not fed into the grid is used to charge one or more storage systems and fuel the production of green hydrogen, with the possibility of drawing energy from the public electricity grid also making an accumulation service of excess renewable energy produced by other renewable plants not created with this method. The method includes the preparation of one or more electricity production plants (10, 11) from discontinuous and variable non-programmable renewable sources, having an overall predetermined maximum installed renewable power PRI; the preparation of one or more systems of electrical energy storage (17, 18) of similar or different technology electrically connected to each other, having a predetermined maximum storage power PS which are electrically connected to said one or more electrical energy production plants (10, 11) from a discontinuous and variable renewable source through electrotechnical and electromechanical technical means creating a power plant (100, 101); the connection of said power station (100, 101) to the public electricity grid (16) with technical power transmission means (14, 15) having a pre-det
Resumen de: EP4624806A2
An industrial system (20) for heating, drying, or curing, comprising an electrolyser (700) for producing hydrogen fuel from water; at least one heating element for using the hydrogen fuel; and a processor for controlling the at least one heating element such that the at least one heating element is adapted to use the hydrogen fuel under control of the processor; wherein the processor is connected to a network to enable communication to a server, the server having at least one module for providing at least one of monitoring or control of the operation of the system (20); and wherein the electrolyser (700) is controlled by the processor and adapted to generate the hydrogen fuel under control of the processor and responsive to an indication of use of the hydrogen fuel.
Resumen de: GB2639674A
A system for distributing hydrogen to vehicles 1. The system 1 comprises at least one modular membraneless electrolyser 2 for generating hydrogen gas from seawater and/or brine. It also has at least one vessel 3 (or reservoir) for storing the water with at least one pump 4. Power source(s) 5 for powering electrolyser(s) and the pump(s) are provided. At least one vehicle 6 for transporting the seawater and/or brine may be provided. The power source may comprise renewable energy source(s) such as solar 52 or wind 54. A control system 82 for the operation of hydrogen production, is defined where the control system 82 may receive data from a machine learning algorithm. A number of distribution systems can be established where they are located in geographically separate locations.
Resumen de: MX2025009259A
A hydrogen generation system includes: a direct current (DC) power supply providing a driver signal, a reactive circuit coupled to the power supply and configured to generate a pulse drive signal from the driver signal, at least one reaction chamber coupled to the reactive circuit and receiving the pulse drive signal wherein the chamber is configured to generate hydrogen from feedstock material utilizing the pulse drive signal, a gas analyzer coupled to the at least one reaction chamber and configured to detect the generated hydrogen, and a control unit coupled to the reactive circuit and to the gas analyzer and configured to control the reactive circuit based on the detected hydrogen. The reaction chamber includes a plurality of positively charged elements and a plurality of negatively charged elements. The elements are composed of non-dis similar metallic material.
Resumen de: EP4624631A1
An electrolytic cell of the present disclosure includes a first separator, a second separator, an anion exchange membrane disposed between the first separator and a second separator, a cathode disposed between the first separator and the anion exchange membrane, and an anode disposed between the second separator and the anion exchange membrane. The first separator includes a flow path for supplying an electrolyte to the cathode, and at the cathode, at least part of the electrolyte supplied from the flow path is consumed to generate hydrogen and hydroxide ions. The second separator does not include a flow path for supplying the electrolyte to the anode, and at the anode, oxygen and water are generated by the hydroxide ions that have passed through the anion exchange membrane from the cathode in a state where the electrolyte is not supplied.
Resumen de: MX2025004537A
A method for producing a synthetic fuel from hydrogen and carbon dioxide comprises extracting hydrogen molecules from hydrogen compounds in a hydrogen feedstock to produce a hydrogen-containing fluid stream; extracting carbon dioxide molecules from a dilute gaseous mixture in a carbon dioxide feedstock to produce a carbon dioxide containing fluid stream; and processing the hydrogen and carbon dioxide containing fluid streams to produce a synthetic fuel. At least some thermal energy and/or material used for at least one of the steps of extracting hydrogen molecules, extracting carbon dioxide molecules, and processing the hydrogen and carbon dioxide containing fluid streams is obtained from thermal energy and/or material produced by another one of the steps of extracting hydrogen molecules, extracting carbon dioxide molecules, and processing the hydrogen and carbon dioxide containing fluid streams.
Resumen de: EP4624630A1
Die Erfindung betrifft eine Vorrichtung zur Herstellung von Wasserstoff mittels eines Elektrolyseurs (1), wobei dem Elektrolyseur (1) Wasser aus einer Wassererzeugungsvorrichtung (6) zugeführt wird, wobei die Wassererzeugungsvorrichtung (6) Mittel zum Entziehen und Verflüssigen der Feuchtigkeit der Umgebungsluft (5), insbesondere in Form eines Wärmetauschers der die Feuchtigkeit der Umgebungsluft kondensieren lässt, aufweist, wobei die Energie der Abwärme (2) des Elektrolyseurs (1) der Umgebungsluft (5) vor dem Feuchtigkeitsentzug zugeführt wird, um diese zu erwärmen.
Resumen de: GB2639679A
A hydrogen storage system 10 for producing, storing, releasing and utilising hydrogen, the system comprising: an electrolyser 12; a hydrogen storage bed 14 comprising a hydrogen storage material disposed therein; and a fuel cell 16. When the system assumes a loading condition, hydrogen is produced by the electrolyzer and loaded into the hydrogen storage bed. When the system assumes an unloading condition hydrogen stored in the H2 storage bed is unloaded and directed towards the fuel cell for producing electricity. A filter may be located between the storage bed and electrolyser, or between the storage bed and fuel cell. The storage bed material may comprise a hydridable metal, optionally depleted uranium. The storage bed may comprise a hydrogen storage body and a thermal transfer element comprising a fin element, e.g. a helical fin, that may allow the redistribution and expansion of the hydrogen storage material within the body.
Resumen de: GB2639690A
A sustainable water fuelled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Resumen de: MX2025008404A
The invention provides devices, systems, and methods for providing hydrogen gas mixtures to a subject. The invention allows hydrogen gas mixtures to be provided at a rate that does not restrict normal or even elevated breathing.
Resumen de: AU2024211141A1
The invention provides an electrolyser system (10) comprising a heat storage unit (14) and an electrolyser (16). The heat storage unit (14) comprises at least one heat source infeed. The electrolyser (16) comprises at least one electrolyser cell (20), a steam inlet and at least one off-gas outlet. The off-gas outlet is connected to the heat source infeed to heat the heat storage unit (14). The heat storage unit (14) is configured to use its stored heat to produce steam for feeding into the steam inlet and for generating electrical power, either one at a time or both at the same time. The invention also provides a system comprising an intermittent or variable electricity source (12) and an electrolyser system (10) as defined above. The intermittent or variable electricity source (12) can be configured to power the electrolyser (16) and to heat the heat storage unit (14) via a heating element, either both at the same time or individually.
Resumen de: TW202502644A
A process for the catalytic cracking of ammonia, the process comprising: supplying an ammonia feed gas to one or more heated catalyst containing reaction vessels disposed within an ammonia cracking reactor; and cracking the ammonia in the ammonia feed gas in the one or more catalyst containing reaction vessels to produce a hydrogen containing stream, wherein the or each of the reaction vessels has a wall which is composed of at least a first alloy and a second alloy, wherein the first alloy is more resistant to nitriding than the second alloy and the second alloy provides mechanical support to the first alloy, and wherein at least a portion of the wall adjacent the catalyst is composed of the first alloy.
Resumen de: KR20240033364A
The present specification relates to an electrode catalyst for water electrolysis, a water electrolysis battery including the same, and a manufacturing method thereof. A water electrolysis battery including an electrode catalyst for water electrolysis according to an embodiment of the present invention has excellent oxygen generation activity and durability, and a method for manufacturing an electrode catalyst for water electrolysis according to an embodiment of the present invention exhibits an effect of enabling mass production and scale-up.
Resumen de: US2025092537A1
In this disclosure, a process of recycling acid, base and the salt reagents required in the Li recovery process is introduced. A membrane electrolysis cell which incorporates an oxygen depolarized cathode is implemented to generate the required chemicals onsite. The system can utilize a portion of the salar brine or other lithium-containing brine or solid waste to generate hydrochloric or sulfuric acid, sodium hydroxide and carbonate salts. Simultaneous generation of acid and base allows for taking advantage of both chemicals during the conventional Li recovery from brines and mineral rocks. The desalinated water can also be used for the washing steps on the recovery process or returned into the evaporation ponds. The method also can be used for the direct conversion of lithium salts to the high value LiOH product. The method does not produce any solid effluent which makes it easy-to-adopt for use in existing industrial Li recovery plants.
Resumen de: US2025283237A1
A method can include: processing precursors, electrochemically oxidizing an anolyte and reducing a catholyte in an electrolyzer, and cooperatively using the oxidized anolyte and reduced catholyte in a downstream process. The electrolyzer can include an anode, a cathode, and a separator. The anode can include an anolyte, an electrode, an anolyte reaction region. The cathode can include a catholyte, an electrode, a catholyte reaction region.
Resumen de: US2025296836A1
In a process in which ammonia is cracked to form a hydrogen gas product and an offgas comprising nitrogen gas, residual hydrogen gas and residual ammonia gas, residual ammonia is recovered from the offgas from the hydrogen recovery process by partial condensation and phase separation, and hydrogen is recovered from the resultant ammonia-lean offgas by partial condensation and phase separation. The recovered ammonia may be recycled the cracking process and the recovered hydrogen may be recycled to the hydrogen recovery process to improve hydrogen recovery from the cracked gas. Overall hydrogen recovery from the ammonia may thereby be increased to over 99%.
Resumen de: CN120719310A
本发明提供一种膜电极结构体的制造方法。在第1层叠体提供工序(S1a)中,提供离子交换容量小于规定值的第1离聚物原料(71)与第1电极(44)层叠而成的第1层叠体(70)。在第2层叠体提供工序(S1b)中,提供离子交换容量为规定值以上的第2离聚物原料(73)与第2电极(46)层叠而成的第2层叠体(72)。在基材提供工序(S1c)中,提供电解质基材(74)。在溶胀工序(S2)中,使第1层叠体(70)、第2层叠体(72)和电解质基材(74)溶胀。在接合工序(S3)中,将电解质基材(74)与第1层叠体(70)的第1离聚物原料(71)接合,并且将电解质基材(74)与第2层叠体(72)的第2离聚物原料(73)接合。据此,能够抑制电解效率的下降和电解质膜劣化的加剧。
Resumen de: AU2024307301A1
A method and arrangement of performing electrolysis by an electrolyzer includes an operational mode and a partial operational mode. During the operational mode operational power from a main power source (202) to a first (808) and second set of stacks (806). In response to detecting a power insufficient for the first and the second set of stacks (806) to perform electrolysis without impurities, the electrolyzer is set to a partial operational mode, wherein the first set of stacks (808) perform electrolysis without impurities and the second set of stacks (806) do not perform electrolysis.
Resumen de: KR20250142089A
본 발명의 무스케일 전극 및 무막 전기분해를 이용한 수소생산장치는 전원부로부터 전원(DC)을 인가받아 여과수 또는 전해질 수용액을 전기분해하여 수소와 산소를 발생시키는 양극플레이트 및 음극플레이트와; 여과수 또는 전해질 수용액을 양극플레이트와 음극플레이트로 공급할 수 있도록 양극플레이트와 음극플레이트의 사이에 설치되는 흡습성플레이트와; 양극플레이트와 음극플레이트의 양측 각각에 설치되는 전극접합체와; 양극플레이트와 음극플레이트, 흡습성플레이트 및 전극접합체의 중앙에 설치되는 공급관과; 양극플레이트, 음극플레이트 및 흡습성플레이트가 결합되는 결합링과; 전기분해에 의해 발생되는 수소와 산소가 배출되며 유입되는 처리수 또는 전해질 수용액의 누출이 방지되게 결합링의 양측단에 각각 결합되는 복수의 고정판과; 공급관의 양측단에 각각 결합되는 복수의 결합관;을 포함하여 구성되는 것을 특징으로 하며, 유격막 방식의 문제점을 해결하고자 격벽을 설치하지 않고 다공성 전극을 사용함으로 유격막 방식의 효과를 발휘되면서 기존의 전기분해에서 대두되는 막(Membranes)을 사용하지 않으면서 수소의 생산에 따른 신뢰도를 높이고, 이산화탄소 무배출로 기후 온난화 문제 해결과 동시
Resumen de: CN119948208A
Disclosed are a membrane suitable for alkaline water electrolysis and an alkaline water electrolysis device comprising the same. A method for producing hydrogen and a method for producing a membrane for alkaline water electrolysis are also disclosed.
Resumen de: WO2025192602A1
A cell unit (2) comprises: a base material (10) that defines a first surface (11) and a second surface (12) facing each other; a hole (13) that penetrates from the first surface (11) to the second surface (12); a film (21) that is disposed in the hole (13) and partitions the hole (13) into a first space (15) on the first surface (11) side and a second space (16) on the second surface (12) side; a first flow path (40) that is formed on the base material (10) and serves for introducing a first fluid into the first space (15); a second flow path (42) that is formed on the base material (10) and serves for taking out a second fluid from the second space (16); a first gasket (50) disposed on the first surface (11) and surrounding the first space (15) and the first flow path (40); and a second gasket (51) disposed on the first surface (11) and surrounding the second flow path (42) on the outside of the first gasket (50).
Resumen de: WO2025192600A1
This cell unit (2) comprises: a base material (10) that defines a first surface (13) and a second surface (14) that face each other back to back; a hole (15) that penetrates the base material (10) from the first surface (13) to the second surface (14); a film (21) that is disposed in the hole (15) and partitions the hole (15) into a first space (17) on the first surface (13) side and a second space (18) on the second surface (14) side; and an annular outer peripheral member (32) disposed around the outer peripheral surface (11a) of the base material (10).
Resumen de: CN120129568A
The invention relates to a preparation method of a NiMo-MoO3-x porous nanorod catalyst based on a metal organic framework and a non-noble metal alloy catalyst prepared by the preparation method. According to the preparation method of the non-noble metal alloy catalyst disclosed by the invention, the alloy catalyst which combines the alloy with the oxide to form the nanorod with porosity and high surface area and has excellent HER performance close to that of a commercial platinum catalyst can be prepared.
Resumen de: EP4617596A1
A process for producing and liquefying hydrogen, said process comprising the following steps:- Providing an ammonia feedstock stream,- Producing a hydrogen gas product by a gas conversion,- Wherein at least part of said ammonia feedstock stream is converted by said gas conversion and/or at least part of said ammonia feedstock stream is combusted to bring heat to the process, in particular to said gas conversion,- Liquefying the hydrogen gas product at least by:∘ precooling said hydrogen gas product under conditions to precool said hydrogen gas product at a temperature between 70 kelvin and 100 kelvin, preferably around 80 kelvin and thus obtaining a precooled hydrogen product,∘ cooling the precooled hydrogen gas product under conditions effective for cooling said precooled hydrogen gas product at a temperature between 10 kelvin and 50 kelvin, preferably around 20 kelvin, and thus liquefying the hydrogen gas product to obtain liquid hydrogen,- Cooling the hydrogen gas product by heat exchange with at least part of the ammonia feedstock stream upstream the cooling of the precooled hydrogen gas product.
Nº publicación: CN120700514A 26/09/2025
Solicitante:
本田技研工业株式会社
Resumen de: US2025305161A1
A differential pressure electrolysis cell for producing a gas having a higher pressure than a fluid at the second electrode by applying a voltage between a first electrode and a second electrode to electrolyze the fluid containing water and supplied to the first electrode, wherein an electrolyte membrane of the differential pressure electrolysis cell includes: a first layer facing the first electrode and having a first ion exchange capacity per unit area; and a second layer facing the second electrode and having a second ion exchange capacity per unit area, and the second ion exchange capacity is larger than the first ion exchange capacity.