Resumen de: EP4570745A1
The present disclosure relates to apparatuses for producing hydrogen, and to top-down methods for producing nanoparticles. Different mechanical mills may be used to break down micron sized soil or sand particles and to react the particles with water, particularly sea water.
Resumen de: EP4570744A1
A method for producing hydrogen using a feed stream comprising ammonia is provided. The method can include the steps of: cracking a gaseous ammonia feed in an ammonia cracker to produce a cracked gas stream comprising hydrogen, nitrogen, and unreacted ammonia; cooling the cracked gas stream to a first temperature that is sufficient for condensing at least a portion of the unreacted ammonia to form a dual phase fluid; separating the dual phase fluid in an ammonia separator to produce a liquid ammonia stream and a top gas stream comprised predominately of hydrogen and nitrogen; removing additional ammonia from the top gas stream using a front-end purification system to form a purified top gas stream; further cooling the purified top gas stream to a second temperature that is sufficient for condensing at least a portion of the nitrogen within the top gas stream to form a dual-phase stream, wherein the second temperature is colder than the first temperature; introducing the dual-phase stream to a cryogenic hydrogen separator under conditions effective for separating hydrogen and nitrogen, thereby creating a liquid nitrogen stream and a hydrogen top gas; warming and vaporizing the liquid nitrogen stream to produce a gaseous nitrogen stream; warming the hydrogen top gas to produce a gaseous hydrogen product stream; and recycling the liquid ammonia stream produced by the ammonia separator to a point upstream the ammonia cracker.
Resumen de: EP4570743A1
A method for producing hydrogen using a feed stream comprising ammonia is provided. The method may include the steps of: cracking a gaseous ammonia feed comprising ammonia and at least 0.15% water vapor in an ammonia cracker to produce a cracked gas stream comprising hydrogen, nitrogen, unreacted ammonia, and water vapor; cooling the cracked gas stream to a separation temperature that is sufficient for condensing at least a portion of the unreacted ammonia and the water vapor to form a dual phase fluid; separating the dual phase fluid in a separator that is configured to produce an aqueous ammonia stream and a vapor stream, the vapor stream comprising predominantly of hydrogen and nitrogen; wherein the separation temperature is below 0°C.
Resumen de: EP4571906A1
The present invention relates to a hydrogen ion conductive multilayer composite membrane comprising one or more inner reinforced membrane comprising a porous PTFE layer impregnated with an ionomer composition and outer reinforced membranes positioned on both sides of the inner reinforced membrane, wherein the outer reinforced membranes comprise a porous PTFE layer impregnated with an ionomer composition.
Resumen de: EP4570960A1
Die Erfindung betrifft eine Elektrolysezelle (01) zur Elektrolyse von CO2 mit einer Kathodenseite (02) und einer Anodenseite (03). Dabei umfasst die Elektrolysezelle (01) eine Kathodenplatte (04), eine Gaskammer (06), eine Gasdiffusionsschicht (08), eine Katalysatorschicht (09), eine Wasserkammer (07) und eine Anodenplatte (05). Die Kontaktierung der Katalysatorschicht (09) wird durch die Verwendung mehrerer Strombrücken (10) optimiert. Hierzu sind diese (10) elektrisch leitend mit der Kathodenplatte (04) und der Katalysatorschicht (09) verbunden und durchdringen dabei die Gasdiffusionsschicht (08).
Resumen de: EP4570742A1
A method for producing hydrogen comprises a) performing water electrolysis to produce oxygen and a first hydrogen product stream; b) reforming a hydrocarbon stream with oxygen to produce a reformed stream containing CO<sub>x</sub> and hydrogen; c) optionally, subjecting said reformed stream to a water gas shift process to produce a shifted product stream containing additional hydrogen and carbon dioxide; and separating hydrogen from the shifted product stream to produce a second hydrogen product stream; and d) directing oxygen produced in step a), optionally after buffering, to step b). The method allows for producing constant, continuous and uninterrupted amounts of emission-free hydrogen accomodating external influences such as fluctuations with weather conditions, day-night cycles and seasons. Said process can be run continuously and is not reliant on only one energy source which might be fluctuating.
Resumen de: EP4570950A1
The present invention relates to an electrolyzer designed for the generation of hydrogen and oxygen through water electrolysis. The electrolyzer comprises a housing structure accommodating at least one electrolytic cell, which includes an anode, a cathode, and an ion-conducting membrane. A water inlet is provided to introduce water into the electrolytic cell, and an electrical power source is operatively connected to the anode and cathode to facilitate the electrolysis process. The electrolyzer also includes separate outlets for the efficient extraction of hydrogen and oxygen generated during electrolysis. A multi-parameter optical measurement system is integrated within the electrolyzer. This system features at least one optical fiber with multiple sensing points distributed along its length, each capable of detecting various operational parameters within the electrolyzer.
Resumen de: EP4570958A2
A method of operating an electrolyzer module includes providing a first air stream and steam into a stack of electrolyzer cells located in a hotbox and outputting a product stream containing hydrogen and steam, and an oxygen exhaust stream, providing the product stream to an internal product cooler (IPC) heat exchanger located in the hotbox to reduce the temperature of the product stream by transferring heat to the first air stream, and providing the product stream from the IPC to an external product cooler (EPC) heat exchanger located outside of the hotbox and inside of a cabinet housing the hotbox to further reduce the temperature of the product stream by transferring heat to a fluid stream.
Resumen de: EP4570957A2
A method operating an electrolyzer system includes producing hydrogen by electrolysis of steam in at least one electrolyzer cell stack of the electrolyzer system using power received from an intermittent power source, detecting a reduction in a level of power received from the intermittent power source below a first threshold, decreasing a rate of producing hydrogen in response to the detected reduction in the level power below the first threshold, detecting a reduction in a level of power received from the intermittent power source below a second first threshold that is lower than the first threshold, and switching the electrolyzer system into a hot standby mode in which the electrolyzer system does not produce hydrogen and maintains the least one electrolyzer cell stack above a predetermined threshold temperature.
Resumen de: EP4570949A1
A hydrogen gas generation system comprises a reactor chamber, an elongate cathode, an ammonia inlet, a hydrogen gas outlet, and a collection outlet. The reactor chamber has an input end and an output end. A wall of the reactor chamber between the input end and the output end is an anode. The elongate cathode extends between the input end and the output end through an interior of the reactor chamber. The ammonia inlet is positioned to introduce a liquid ammonia into the reactor chamber such that the liquid ammonia flows in a direction from the input end to the output end. The hydrogen gas outlet at the output end, wherein a hydrogen gas generated in the reactor chamber exits the reactor chamber through the hydrogen gas outlet. The collection outlet is at the output end. Nitrogenous compounds exit the reactor chamber through the collection outlet.
Resumen de: DE102024125854A1
Verfahren zur Konditionierung einer Elektrolysevorrichtung (10), die zur Erzeugung von Wasserstoff aus Wasser mit Hilfe von elektrischem Strom eingerichtet ist, wobei die Elektrolysevorrichtung (10) vor dem Einbau in eine Wasserstoffproduktionsanlage zumindest einer chemischen Konditionierung über ein Durchspülen der Elektrolysevorrichtung (10) unterzogen wird.
Resumen de: DE102023212702A1
Elektrolysesystem mit einem Elektrolysestack (1), der eine Vielzahl von elektrolytischen Zellen (101) umfasst, die jeweils einen Kathodenraum (102) und einen Anodenraum (103) aufweisen und die dazu ausgebildet sind, Wasser im Anodenraum (103) elektrolytisch in Wasserstoff und Sauerstoff aufzuspalten. Der im Kathodenraum (102) erzeugte Wasserstoff wird über einen Kathodenauslass (2) des Elektrolysestacks (1) und eine hieran angeschlossene Medienleitung (7) einem ersten Gas-Flüssig-Separator (9) zugeführt. Ein zweiter Gas-Flüssig-Separator (15) ist mit dem Kathodenauslass (2) verbindbar. Je nach Druck im Elektrolysestack (1) wird der Kathodenauslass mit dem ersten (9) oder mit dem zweiten Gas-Flüssig-Separator (15) verbunden.
Resumen de: GB2636333A
A system comprising two electrolysis subsystems for electrolysis of water to produce hydrogen, wherein the first subsystem produces waste thermal energy and the second uses this energy. One of the subsystems may use a low-temperature electrolysis technology and the other a high-temperature technology. Said low-temperature process may be anionic exchange membrane (AEM) electrolysis, alkaline electrolysis or a combination. The high-temperature process may be solid oxide electrolysis cell (SOEC) electrolysis. The waste thermal energy may be recovered into a heat exchange fluid and the system may also comprise a heater or a steam generator. Also claimed is a method for the system.
Resumen de: WO2024184065A1
An offshore hydrogen production platform (100) is described comprising a support structure (101) and plurality of vertically spaced decks (110, 111, 112) arranged to be supported by the support structure (101). The plurality of vertically spaced decks (110,111, 112) comprise an uppermost deck (110), and wherein the uppermost deck (110) comprises a hydrogen production equipment (130). The offshore hydrogen production platform (100) further comprises an enclosure (113) arranged to encapsulate the hydrogen production equipment (130). Also described is a method of producing hydrogen using hydrogen production equipment (130) located on a uppermost deck (110) of an offshore hydrogen platform (100).
Resumen de: CN119677896A
In one embodiment, discussed herein is a method of producing hydrogen, the method comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, where the membrane is both electronically and ionically conductive; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia; (c) introducing an oxidizing agent to the anode; and (d) introducing a second stream to the cathode, wherein the second stream comprises water and provides a reducing environment to the cathode; wherein the hydrogen is generated from water in an electrochemical manner; wherein the first stream and the second stream are separated by the membrane; and wherein the oxidant and the second stream are separated by the membrane.
Resumen de: EP4570955A1
The cell (26) comprises a cell casing (34) defining an anodic compartment (36) and a cathodic compartment (38), the anodic compartment (36) comprising an anode chamber (50) and the cathodic compartment (38) comprising a cathode chamber (58), the cell casing (34) comprising a membrane (40) separating the anode chamber (50) from the cathode chamber (58).The anodic compartment (36) defines, within the cell casing (34), an anodic degassing cavity (52) located on top of the anode chamber (50), the cathodic compartment (38) defining, within the cell casing (34), an cathodic degassing cavity (60) located on top of the cathode chamber (58). The cell casing (34) comprises a partition wall (42) tightly separating the anodic degassing cavity (52) from the cathodic degassing cavity (60).
Resumen de: KR20250089313A
본 발명의 예시적인 실시예들에 따르면, 암모니아 분해용 촉매가 제공된다. 상기 암모니아 분해용 촉매는 세라믹 담지체; 및 상기 세라믹 담지체 상에 담지된 복합체로서, 상기 세라믹 담지체 상에 위치한 제1 산화물과, 상기 제1 산화물의 표면에 용출된 활성 금속 입자를 포함하는 복합체를 포함한다. 또한, 본 발명의 다른 예시적인 실시예들에 따르면, 암모니아 분해용 촉매를 제조하는 방법이 제공된다.
Resumen de: CN120158774A
本公开阳极催化剂材料技术领域,具体涉及一种阴离子交换膜水电解阳极催化剂材料及制备方法,所述阴离子交换膜水电解阳极催化剂材料的制备方法,包括以下步骤:步骤一:将铁源、镍源与双模板剂混合,得到混合溶液;步骤二:向步骤一的混合溶液中加入沉淀剂进行共沉淀反应,控制反应体系的pH值为8‑12,反应温度为60‑100℃,反应时间为6‑24小时,得到共沉淀产物;步骤三:将所述共沉淀产物在空气或氧气气氛中煅烧处理,以1‑10℃/分钟的升温速率升温至500‑600℃,保温2‑5小时,冷却至室温后得到阳极催化剂材料。上述技术方案在兼顾高催化活性、优良的传质性能以及高比表面积方面达到了平衡。
Resumen de: KR20250088138A
비스디아지린을 포함하는 광가교제, 그를 이용한 광촉매 개질 및 수소생산장치가 개시된다. 본 발명은 구조식 1로 표시되는 화합물이 개시된다. 구조식 1 에서, Z가 산소원자이면 Y는 원자가 결합이거나, 또는 Z가 탄소원자이면 Y는 산소원자이고, R1은 C1 내지 C6의 알킬렌기이고, Ar1 및 Ar2는 각각 C1 내지 C5의 알킬기가 치환 또는 비치환된 C6 내지 C20의 아릴렌기이고, X1 및 X2는 각각 불소원자, 염소원자, 브롬원자 또는 요오드 원자이고, n은 1 내지 100의 정수이다. 본 발명은 비스디아지린 광가교제의 글라이콜 개질을 통하여 비스디아지린 광가교제의 친수성 성질을 강화할 수 있는 효과가 있다.
Resumen de: CN120155230A
本发明涉及光催化剂技术领域,且公开了一种钨和金修饰g‑C3N4制氢复合催化剂及其制备方法和应用。本发明所述催化剂为钨和金以及聚合物半导体的复合材料,由超薄g‑C3N4纳米片、高度分散的W单原子和Au纳米团簇组成。本发明还公开了制备所述催化剂的方法,具体包括:步骤一:制备黄色g‑C3N4块体;步骤二:制备白色g‑C3N4薄片;步骤三:混合CN和Na2WO4原材料;步骤四:制备负载有W单原子的g‑C3N4薄片;步骤五:混合g‑C3N4薄片和HAuCl4;步骤六:制备负载有Au纳米团簇和W单原子的g‑C3N4薄片。本发明还公开了将所述催化剂应用于光催化水分解制氢的方法。本发明系统解决g‑C3N4基光催化剂存在的活性位点密度低、光生载流子分离效率差及光谱响应范围窄等共性难题,实现高效光催化水分解制氢。
Resumen de: CN120158770A
本发明涉及催化剂技术领域,特别是涉及一种氟掺杂氧化铱催化剂及其制备方法和应用。将氮化碳前体焙烧,得到氮化碳载体,将所述氮化碳载体分散于水中,得到氮化碳载体分散液;将氮化碳载体分散液与铱盐溶液、氟源混合,干燥后得到催化剂前驱体;将催化剂前驱体煅烧,得到氟掺杂氧化铱催化剂。催化剂的颗粒尺寸小、原子利用率高;氟原子的掺杂可以优化反应过程中质子脱附步骤,加快酸性氧析出OER反应动力学,实现本征活性提升。本发明制备的氟掺杂二氧化铱催化剂在OER反应中具有优异的反应活性。
Resumen de: CN120158775A
本申请涉及催化材料技术领域,特别是涉及一种Ni/Fe3O4复合材料、电极及其制备方法、碱性电解槽及电解水制氢的方法。Ni/Fe3O4复合材料包括二次颗粒,二次颗粒包括堆积的一次颗粒,一次颗粒包括内核和设于内核表面的外壳,内核包括四氧化三铁,外壳包括镍单质。该Ni/Fe3O4复合材料以四氧化三铁为内核,在内核的表面包覆镍单质外壳,使该Ni/Fe3O4复合材料的导电性能较好;将其作为催化材料制备碱性电解槽中的电极,并用于电解水制氢,可降低水电解反应的活化能,从而降低水电解反应的过电位,进而提升制氢效率,且无需升高电解槽运行温度,可降低能耗,以及基本不会破坏隔膜以及不腐蚀槽体。
Resumen de: CN120155192A
本发明提供一种钴包覆硫化镉光催化产氢材料及其制备方法和应用,涉及光催化材料技术领域,钴包覆硫化镉光催化产氢材料的制备方法,具体包括如下步骤:S1、以硫代乙酰胺、乙酸镉二水合物为原料,采用溶剂热法制得CdS纳米颗粒;S2、以乙酸钴四水合物和步骤S1制得的CdS纳米颗粒为原料,采用离子吸附方法制得钴包覆硫化镉光催化产氢材料。与现有技术相比,本发明提供一种钴包覆硫化镉光催化产氢材料及其制备方法和应用,有效抑制了硫化镉在光照条件下的自氧化过程,减少了硫离子的溶出,显著提高了材料的光化学稳定性,延长了其使用寿命。
Resumen de: CN120158766A
本发明公开了一种二氧化钼负载铂催化剂的制备方法及其应用,属于纳米催化剂技术领域,制备方法:将乙酰丙酮铂和乙酰丙酮钼溶解在有机溶剂中,滴涂在碳纸上并加热,将所得负载前驱体样品的碳纸固定在焦耳加热装置中完成快速碳热冲击反应制得。本发明可有效分散金属铂,以暴露更多的反应活性位点,同时利用金属铂与二氧化钼载体之间的相互作用,降低金属铂对氢的吸附能力,增强催化体系活性和稳定性,提升电解水制氢催化活性,并显著降低金属铂的使用量。
Nº publicación: CN120155131A 17/06/2025
Solicitante:
上海交通大学
Resumen de: CN120155131A
一种氨制氢技术领域的高效的自热型氨分解制氢反应器,包括燃烧尾气出口、保温层壳体、反应层壳体、螺旋折流板、燃烧室壳体、螺旋助燃气管、保温层、反应层、燃烧室、斜向开口、氨分解入口、氨燃烧入口、助燃气入口、分解气出口、挡板座、尾气连通口、分解气汇集管、分解气汇集室,反应层壳体嵌套于保温层壳体内,两者之间形成保温层,燃烧室壳体嵌套于反应层壳体内,两者之间形成反应层。本发明采用氨为主要燃料,用氢作为引燃料,氨氢在燃烧室中掺混燃烧为氨分解反应提供热量,从而实现自热式的氨分解制氢。本发明采用了三层嵌套式的结构,具有结构紧凑、能量利用率高等优点。