Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 535 resultados
LastUpdate Última actualización 08/08/2025 [07:02:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Resultados 325 a 350 de 535 nextPage  

METHOD FOR PRODUCING JUNCTION PHOTOCATALYST, AND JUNCTION PHOTOCATALYST

NºPublicación:  US2025196120A1 19/06/2025
Solicitante: 
KAO CORP [JP]
KAO CORPORATION
CN_118946408_A

Resumen de: US2025196120A1

The present invention provides a method for producing a heterojunction photocatalyst having higher catalytic activity than that of conventional heterojunction photocatalysts, and a heterojunction photocatalyst. A method for producing a heterojunction photocatalyst having a solid state mediator between a hydrogen-evolution photocatalyst and an oxygen-evolution photocatalyst, which includes the following step 1: step 1: a step of joining the solid state mediator onto the oxygen-evolution photocatalyst by at least one method selected from the group consisting of a photoelectrodeposition method, an impregnation supporting method, and a precipitation method, in each of which an organic carboxylic acid compound and a solid state mediator or a precursor of the solid state mediator are used.

JUNCTION PHOTOCATALYST

NºPublicación:  US2025196119A1 19/06/2025
Solicitante: 
KAO CORP [JP]
KAO CORPORATION
CN_118804801_A

Resumen de: US2025196119A1

The present invention provides a heterojunction photocatalyst having higher catalytic activity than that of conventional junction photocatalysts. The heterojunction photocatalyst of the present invention is a heterojunction photocatalyst having a solid state mediator between a hydrogen-evolution photocatalyst and an oxygen-evolution photocatalyst, in which the solid state mediator and the hydrogen-evolution photocatalyst are joined to each other via an ionic polymer.

APPARATUSES AND METHODS FOR PRODUCING HYDROGEN FROM SAND AND WATER

NºPublicación:  US2025197207A1 19/06/2025
Solicitante: 
LICITAR ANTONIJO [HR]
Licitar Antonijo
US_2025197207_A1

Resumen de: US2025197207A1

A method may provide a mechanical mill for reducing a size of particles; wherein the mechanical mill includes: a core for accelerating particles, the core including: a first disc and a second disc facing the first disc in an axial direction, wherein each of the first disc and the second disc includes a plurality of concentric rings and a plurality of concentric channels alternately interleaved with the plurality of concentric rings; and wherein the first disc, the second disc, or a combination thereof are rotated. A method may introduce water into the mechanical mill. A method may introduce soil particles into the mechanical mill. A method may activate the mechanical mill to accelerate the water and the soil particles. A method may thereby produce nanoparticles from the soil particles and producing hydrogen from a reaction between the nanoparticles and the water.

METHOD OF PREPARING HYDROGEN BASED ON MICRO-DROPLETS

NºPublicación:  US2025198013A1 19/06/2025
Solicitante: 
XIAN UNIV [CN]
XI'AN UNIVERSITY
US_2025198013_A1

Resumen de: US2025198013A1

A method of preparing hydrogen based on micro-droplets includes: S1, mixing water and a regulator to obtain an aqueous solution, where the regulator is one or more of: a metal conductor, a nanomaterial, a conductive polymer, and an inorganic salt having a redox property; S2, inputting the aqueous solution to a micro-droplet generation device to generate the micro-droplets, where each of the micro-droplets has a size of less than or equal to 10 μm, and hydrogen radicals are spontaneously generated at a gas-liquid interface of each of the micro-droplets; S3, the hydrogen radicals being compounded with each other to generate the hydrogen; and S4, collecting the hydrogen or the hydrogen radicals.

ELECTROLYSER AND METHOD FOR OPERATING AN ELECTROLYSER

NºPublicación:  US2025198012A1 19/06/2025
Solicitante: 
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
Siemens Energy Global GmbH & Co. KG
US_2025198012_A1

Resumen de: US2025198012A1

The invention pertains to an electrolyser for producing hydrogen (H2) and oxygen (O2) as product gases. It includes an electrolysis module and a gas separator for phase separation of the product gas from water. The electrolysis module is connected to the gas separator via a product flow line, and a return line with a circulation pump connects the gas separator back to the electrolysis module for separated water. A bypass line with a valve allows water to be supplied from the gas separator to the electrolysis module during standstill. The invention also covers a method for operating the electrolyser, where in standstill mode, the electrolysis current is stopped, and a safety deactivation is initiated. Water is automatically driven into the electrolysis module due to a hydrostatic differential pressure (Δp) from a predefined height difference (Δh), flooding the electrolysis module.

METHOD AND APPARATUS FOR SEPARATING RESIDUAL AMMONIA AND WATER FROM CRACKED AMMONIA

NºPublicación:  WO2025128535A1 19/06/2025
Solicitante: 
LAIR LIQUIDE SA POUR LETUDE ET LEXPLOITATION DES PROCEDES GEORGES CLAUDE [FR]
AMERICAN AIR LIQUIDE INC [US]
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE,
AMERICAN AIR LIQUIDE, INC
EP_4570743_PA

Resumen de: WO2025128535A1

A method for producing hydrogen using a feed stream comprising ammonia is provided. The method may include the steps of: cracking a gaseous ammonia feed comprising ammonia and at least 0.15% water vapor in an ammonia cracker to produce a cracked gas stream comprising hydrogen, nitrogen, unreacted ammonia, and water vapor; cooling the cracked gas stream to a separation temperature that is sufficient for condensing at least a portion of the unreacted ammonia and the water vapor to form a dual phase fluid; separating the dual phase fluid in a separator that is configured to produce an aqueous ammonia stream and a vapor stream, the vapor stream comprising predominantly of hydrogen and nitrogen; wherein the separation temperature is below 0°C.

AN ELECTROLYZER WITH A MULTI-PARAMETER MEASUREMENT SYSTEM

NºPublicación:  WO2025127924A1 19/06/2025
Solicitante: 
NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK TNO [NL]
NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
EP_4570950_PA

Resumen de: WO2025127924A1

The present invention relates to an electrolyzer designed for the generation of hydrogen and oxygen through water electrolysis. The electrolyzer comprises a housing structure accommodating at least one electrolytic cell, which includes an anode, a cathode, and an ion-conducting membrane. A water inlet is provided to introduce water into the electrolytic cell, and an electrical power source is operatively connected to the anode and cathode to facilitate the electrolysis process. The electrolyzer also includes separate outlets for the efficient extraction of hydrogen and oxygen generated during electrolysis. A multi-parameter optical measurement system is integrated within the electrolyzer. This system features at least one optical fiber with multiple sensing points distributed along its length, each capable of detecting various operational parameters within the electrolyzer.

ELECTROLYSIS SYSTEM AND METHOD FOR OPERATING SAME

NºPublicación:  WO2025125277A1 19/06/2025
Solicitante: 
ROBERT BOSCH GMBH [DE]
ROBERT BOSCH GMBH
DE_102023212702_PA

Resumen de: WO2025125277A1

The invention relates to an electrolysis system comprising an electrolysis stack (1) having multiple electrolytic cells (101) which each comprise a cathode chamber (102) and an anode chamber (103) and are designed to electrolytically split water in the anode chamber (103) into hydrogen and oxygen. The hydrogen generated in the cathode chamber (102) is fed to a first gas-liquid separator (9) through a cathode outlet (2) of the electrolysis stack (1) and via a medium line (7) connected thereto. A second gas-liquid separator (15) can be connected to the cathode outlet (2). Depending on the pressure in the electrolysis stack (1), the cathode outlet is connected to the first gas-liquid separator (9) or to the second gas-liquid separator (15).

METHOD FOR PRODUCING AN ELECTRODE FOR USE IN ALKALINE ELECTROLYSIS OF WATER, AND ELECTRODE

NºPublicación:  WO2025125243A1 19/06/2025
Solicitante: 
KS GLEITLAGER GMBH [DE]
KS GLEITLAGER GMBH
DE_102023134698_PA

Resumen de: WO2025125243A1

The invention relates to a method for producing an electrode (10) for use in alkaline electrolysis of water, the method comprising: providing a metal substrate (12); providing a coating material (26) comprising powder (28) consisting of a catalyst material (20), and comprising non-metal particles (24); and coating at least a portion of the substrate with the coating material. The invention also relates to electrodes produced in this way.

APPARATUSES AND METHODS FOR PRODUCING HYDROGEN

NºPublicación:  WO2025125633A1 19/06/2025
Solicitante: 
LICITAR ANTONIJO [HR]
SIMA MARC [ES]
LICITAR, Antonijo,
SIMA, Marc
US_2025197207_A1

Resumen de: WO2025125633A1

The present disclosure relates to apparatuses for producing hydrogen, and to top-down methods for producing nanoparticles. Different mechanical mills may be used to break down micron sized soil or sand particles and to react the particles with water, particularly sea water.

EFFICIENT USE OF HEAT IN E-METHANOL PLANT

NºPublicación:  WO2025125439A1 19/06/2025
Solicitante: 
TOPSOE AS [DK]
TOPSOE A/S

Resumen de: WO2025125439A1

A methanol plant and process for producing methanol are provided. A first SOE section is arranged to receive a carbon dioxide-rich feed and electrolyse it to a carbon monoxide-rich stream. A methanol loop is arranged to receive at least a portion of the carbon monoxide-rich stream and a hydrogen-rich stream and convert them to a crude methanol stream. A first H2O-rich stream is converted to a first steam stream by means of heat from the electrolysis process in the first SOE section. The first steam stream is used it as heat for the distillation of the crude methanol stream in the methanol distillation section.

A WATER ELECTROLYZER CELL, RELATED STACK OF WATER ELECTROLYZER CELLS AND PROCESS

NºPublicación:  WO2025125346A1 19/06/2025
Solicitante: 
TOTALENERGIES ONETECH [FR]
TOTALENERGIES ONETECH
EP_4570955_PA

Resumen de: WO2025125346A1

The present application relates to a water electrolyzer cell (26), related stack of water electrolyzer cells and process The cell (26) comprises a cell casing (34) defining an anodic compartment (36) and a cathodic compartment (38). The anodic compartment (36) comprises an anode chamber (50) and the cathodic compartment (38) comprises a cathode chamber (58). The cell casing (34) comprises a membrane (40) separating the anode chamber (50) from the cathode chamber (58). The anodic compartment (36) defines, within the cell casing (34), an anodic degassing cavity (52) located on top of the anode chamber (50). On the other side, the cathodic compartment (38) defines, within the cell casing (34), an cathodic degassing cavity (60) located on top of the cathode chamber (58). The cell casing (34) comprises a partition wall (42) tightly separating the anodic degassing cavity (52) from the cathodic degassing cavity (60).

GREEN HYDROGEN, SYNTHESIS GAS WITH A REDUCED NITROGEN CONTENT, AND FLUE GAS FOR THE SYNTHESIS OF AMMONIA AND UREA

NºPublicación:  WO2025125181A1 19/06/2025
Solicitante: 
THYSSENKRUPP UHDE GMBH [DE]
THYSSENKRUPP AG [DE]
THYSSENKRUPP UHDE GMBH,
THYSSENKRUPP AG

Resumen de: WO2025125181A1

The invention relates to the synthesis of urea from ammonia and carbon dioxide, wherein the hydrogen required for ammonia synthesis is obtained both by steam reforming of feed natural gas (grey hydrogen) and by electrolysis of water using electricity from renewable energy sources (green hydrogen). As the proportion of green hydrogen increases, the amount of carbon dioxide formed in the synthesis gas during steam reforming is no longer sufficient for the synthesis of urea. Therefore, flue gas, which is formed during the combustion of a fuel gas composed of fuel natural gas and combustion air and which also contains carbon dioxide, is additionally used. The oxygen formed during the electrolysis of water is introduced into the flue gas, and the modified flue gas is fed to a secondary reformer; and/or the fuel natural gas is combusted together with combustion air and the oxygen formed during electrolysis. Excess nitrogen is preferably separated from the synthesis gas before it is used for the synthesis of ammonia.

GREEN HYDROGEN, SYNTHESIS GAS, AND FLUE GAS WITH A REDUCED NITROGEN CONTENT FOR THE SYNTHESIS OF AMMONIA AND UREA

NºPublicación:  WO2025125180A1 19/06/2025
Solicitante: 
THYSSENKRUPP UHDE GMBH [DE]
THYSSENKRUPP AG [DE]
THYSSENKRUPP UHDE GMBH,
THYSSENKRUPP AG

Resumen de: WO2025125180A1

The invention relates to the synthesis of urea from ammonia and carbon dioxide, wherein the hydrogen required for ammonia synthesis is obtained both by steam reforming of feed natural gas (grey hydrogen) and by electrolysis of water using electricity from renewable energy sources (green hydrogen). As the proportion of green hydrogen increases, the amount of carbon dioxide formed in the synthesis gas during steam reforming is no longer sufficient for the synthesis of urea. Therefore, flue gas, which is formed during the firing of the steam reformer and also contains carbon dioxide, is additionally used. After reducing the nitrogen content, the flue gas is fed into the reforming process. The carbon dioxide from the synthesis gas and the flue gas is combined, separated using conventional carbon dioxide scrubbing, and used for the synthesis of urea.

OFFSHORE ELECTROLYSIS SYSTEM, AND METHOD FOR OPERATING AN OFFSHORE ELECTROLYSIS SYSTEM

NºPublicación:  WO2025124791A1 19/06/2025
Solicitante: 
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
SIEMENS ENERGY GLOBAL GMBH & CO. KG
DE_102023212440_PA

Resumen de: WO2025124791A1

The invention relates to an offshore electrolysis system (100) comprising a wind turbine (1) having a tower (19), which is anchored to the seabed, and having an electrolysis plant (5), wherein the electrolysis plant (5) is connected to the wind turbine (1) by a supply line (11), and wherein the electrolysis plant (5) has an electrolyser (13) which is arranged in a container (9), wherein the container (9) is arranged below sea level (25). The invention also relates to a method for operating a corresponding offshore electrolysis system. In this method, water is broken down into hydrogen (H2) and oxygen by an electrolyser (13) of the electrolysis plant (5), which electrolyser is located below sea level (25), wherein the hydrogen (H2) produced is transported away via a product gas line (7).

ELECTROLYTIC CELL HAVING OPTIMIZED CONTACTING OF A CATALYST LAYER

NºPublicación:  WO2025124766A1 19/06/2025
Solicitante: 
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
SIEMENS ENERGY GLOBAL GMBH & CO. KG
WO_2025124766_PA

Resumen de: WO2025124766A1

The invention relates to an electrolytic cell (01) for the electrolysis of CO2, comprising a cathode side (02) and an anode side (03). The electrolytic cell (01) comprises a cathode plate (04), a gas chamber (06), a gas-diffusion layer (08), a catalyst layer (09), a water chamber (07) and an anode plate (05). The contacting of the catalyst layer (09) is optimized by using a plurality of current bridges (10). To this end, these current bridges (10) are electrically conductively connected to the cathode plate (04) and to the catalyst layer (09) while penetrating the gas-diffusion layer (08).

METHOD FOR AMMONIA RECOVERY VIA PARTIAL LIQUEFACTION FROM AN AMMONIA CRACKER USING CRYOGENIC SEPARATION

NºPublicación:  WO2025128530A1 19/06/2025
Solicitante: 
AIR LIQUIDE [FR]
AIR LIQUIDE AMERICAN [US]
L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE,
AMERICAN AIR LIQUIDE, INC
WO_2025128530_PA

Resumen de: WO2025128530A1

A method for producing hydrogen using a feed stream comprising ammonia is provided. The method can include the steps of: cracking a gaseous ammonia feed in an ammonia cracker to produce a cracked gas stream comprising hydrogen, nitrogen, and unreacted ammonia; cooling the cracked gas stream to a first temperature that is sufficient for condensing at least a portion of the unreacted ammonia to form a dual phase fluid; separating the dual phase fluid in an ammonia separator to produce a liquid ammonia stream and a top gas stream comprised predominately of hydrogen and nitrogen; removing additional ammonia from the top gas stream using a front-end purification system to form a purified top gas stream; further cooling the purified top gas stream to a second temperature that is sufficient for condensing at least a portion of the nitrogen within the top gas stream to form a dual-phase stream, wherein the second temperature is colder than the first temperature; introducing the dual-phase stream to a cryogenic hydrogen separator under conditions effective for separating hydrogen and nitrogen, thereby creating a liquid nitrogen stream and a hydrogen top gas; warming and vaporizing the liquid nitrogen stream to produce a gaseous nitrogen stream; warming the hydrogen top gas to produce a gaseous hydrogen product stream: and recycling the liquid ammonia stream produced by the ammonia separator to a point upstream the ammonia cracker.

CO2 FIXATION INTO CARBON NANOFIBERS USING ELECTROCHEMICAL-THERMOCHEMICAL TANDEM CATALYSIS

NºPublicación:  WO2025129081A1 19/06/2025
Solicitante: 
THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK [US]
THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Resumen de: WO2025129081A1

A method, comprising electrolyzing a CO2 input and water so as to form a first product comprising CO and H2, the electrolyzing optionally being performed over a Pd/C catalyst or a catalyst that comprises any one or more of gold, silver, iron, cobalt, nickel, copper, or zinc; and thermochemically processing the first product so as to give rise to a second product that comprises carbon nanofibers or nanotubes. A system, comprising: a first reaction zone, the first reaction zone configured to receive CO2 input and water, and the first reaction zone configured for electrolysis of the CO2 input and water to evolve a product that comprises CO; a second reaction zone, the second reaction zone configured to receive a product from the first reaction zone, the second reaction zone configured to support at least one of the Boudouard reaction (R1) and CO + H2 → C(s) + H2O (R2).

Green hydrogen generating device and method

NºPublicación:  KR20250088864A 18/06/2025
Solicitante: 
주식회사포스코

Resumen de: KR20250088864A

그린수소 생성장치 및 방법이 개시된다. 본 발명의 일 측면에 따르면, 제철소에서 발생하는 배가스에 물입자를 분무하는 미분무장치를 구비하고, 상기 배가스에 포함되어 있는 이산화탄소를 용해하여 포집하는 이산화탄소 포집장치; 상기 이산화탄소 포집장치로부터 전달된 이산화탄소 포집수를 가열하여 이산화탄소 가스와 액체로 분리시켜 이산화탄소를 농축 저장하는 이산화탄소 분리장치; 상기 농축 저장된 이산화탄소를 나노버블로 변환시키고 해수에 용해시켜 이산화탄소 수소이온수를 생성하는 이산화탄소 나노버블 발생장치; 및 상기 이산화탄소 수소이온수를 전극반응시켜 수소를 생산하는 전극장치;를 포함하는 그린수소 생성장치가 제공될 수 있다.

COATED DIAPHRAGM FOR USE IN A ZERO-GAP ELECTROLYSIS CELL DESIGNED FOR GREEN HYDROGEN PRODUCTION

NºPublicación:  EP4570954A1 18/06/2025
Solicitante: 
INST PHOTOVOLTAIQUE DILE DE FRANCE IPVF [FR]
ELECTRICITE DE FRANCE [FR]
TOTALENERGIES ONETECH [FR]
CENTRE NAT RECH SCIENT [FR]
Institut Photovolta\u00EFque d'Ile de France - IPVF,
Electricit\u00E9 de France,
TotalEnergies OneTech,
Centre National de la Recherche Scientifique
EP_4570954_PA

Resumen de: EP4570954A1

The invention relates to a coated diaphragm (16) of an electrochemical device (8) for alkaline electrolysis. The diaphragm (16) comprises an alkaline membrane (18) coated on at least one side with a catalyst layer (20). The catalyst layer (20) is obtained by deposition of at least one metallic catalyst on the membrane (18) by physical vapor deposition, the metallic catalyst being chosen between Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W and any combination thereof.

열 에너지 저장소를 갖는 전기화학 전지 시스템 및 관련 방법

NºPublicación:  KR20250089533A 18/06/2025
Solicitante: 
NUOVO PIGNONE TECNOLOGIE SRL [IT]
\uB204\uBCF4 \uD53C\uADF8\uB178\uB124 \uD14C\uD06C\uB180\uB85C\uC9C0 \uC5D0\uC2A4\uC54C\uC5D8
KR_20250089533_PA

Resumen de: AU2023363865A1

Electrochemical cell system (100) which comprises an electrochemical cells arrangement (10), a control unit (20) configured to operate the electrochemical cells arrangement (10) only as electrolytic cells or only as fuel cells, a heat unit (40), external to the electrochemical cells arrangement (10), which is thermally coupled to the electrochemical cells arrangement (10) and which is configured to alternately store heat from the electrochemical cells arrangement (10) to the heat unit (40) and supply heat from the heat unit (40) to the electrochemical cells arrangement (10), and a transfer arrangement (30) configured to alternately transfer heat from the electrochemical cells arrangement (10) to the heat unit (40) and from the heat unit (40) to the electrochemical cells arrangement (10).

Catalytic electrodes for ammonia water electrolysis with improved durability through heat treatment and preparation method thereof

NºPublicación:  KR20250089194A 18/06/2025
Solicitante: 
LOTTE CHEMICAL CORP [KR]
\uB86F\uB370\uCF00\uBBF8\uCE7C \uC8FC\uC2DD\uD68C\uC0AC
KR_20250089194_PA

Resumen de: WO2025127536A1

Disclosed are a catalyst electrode for ammonia electrolysis and a method for effectively producing same, wherein the ratio of oxides and hydroxides in the catalyst electrode for ammonia water electrolysis is improved by introducing a heat treatment step for heat treatment within a specific temperature range after an electroplating step, and as a result, poisoning by nitrogen oxides is suppressed such that durability is improved, and excellent ammonia water electrolysis performance is achieved.

Porous hydrophilic separator, its method of production and an alkaline electrolyzer with such separator

NºPublicación:  DK202330334A1 18/06/2025
Solicitante: 
STIESDAL HYDROGEN AS [DK]
Stiesdal Hydrogen A/S
WO_2025103558_PA

Resumen de: DK202330334A1

In an alkaline electrolyzer (12), especially for production of hydrogen gas, the separator (11) has larger pores in layers (8, 9) on its outer sides (7 A, 7C), facing the electrodes (13, 14), than in the bulk layer (10). In a practical embodiment, the separator (11) is composed of two diaphragms (7, 7 '), each with asymmetric pore structure, where the diaphragms (7, 7') are oriented such that largest pores are on the outer sides of the separator (11 ).

酸窒化物触媒および水素発生装置

NºPublicación:  JP2025091381A 18/06/2025
Solicitante: 
財團法人工業技術研究院
JP_2025091381_A

Resumen de: US2025188630A1

An oxynitride catalyst includes NiaMbNcOd, wherein M is Nb, Mn, or Co, a>0, b>0, c>0, d>0, and a+b+c+d=1. A hydrogen evolution device includes an anode and a cathode dipped in an electrolyte, and the anode includes the oxynitride catalyst. The oxynitride catalyst can be disposed on a support. The oxynitride catalyst may have a polyhedral structure.

電気分解装置のフレーム構造

Nº publicación: JP2025518637A 18/06/2025

Solicitante:

フィーリング,イェンチュラウントパートナーエムベーベーパテント-ウントレッヒアンヴァルト

JP_2025518637_PA

Resumen de: AU2023285309A1

The present invention relates to a framing structure for an electrolyser subject to internal pressure, able to withstand corrosive environments and radial pressure forces. The present invention also relates to an electrolytic cell and electrolyser equipped with said framing structure, as well as its use in high-pressure water electrolysis applications.

traducir