Absstract of: US2025152808A1
A device for delivering medicament to a user, the device configured to be mounted to the user, the device including a baseplate comprising: a first opening and second opening to align with a first port and second port of a micropump, respectively; a first fluid channel in fluid communication with the second opening of the baseplate; and a platform for receiving a pressure sensor, the platform having an opening that communicates with the first fluid channel to enable the pressure sensor to sense pressure in the fluid channel.
Absstract of: US2025152809A1
A medical system includes an input assembly for receiving one or more user inputs. The input assembly includes at least one slider assembly for providing an input signal. Processing logic receives the input signal from the input assembly and provides a first output signal and a second output signal. A display assembly is configured to receive, at least in part, the first output signal from the processing logic and render information viewable by the user. The second output signal is provided to one or more medical system components. The information rendered on the display assembly may be manipulatable by the user and at least a portion of the information rendered may be magnified.
Absstract of: US2025152817A1
Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, a controller module, and optionally a single point glucose monitor are provided. Integration may be manual, semi-automated and/or fully automated.
Absstract of: US2025152673A1
Disclosed herein are an aqueous pharmaceutical formulation comprising cagrilintide and an aqueous formulation comprising semaglutide. The compositions of these two pharmaceutical formulations allow for their presentation in, and administration using, the dual-chamber medical device disclosed herein. Individuals with diseases, such as diabetes and/or obesity and/or related co-morbidities, may benefit from the co-administration of semaglutide and cagrilintide, and/or of the two liquid pharmaceutical formulations disclosed herein, using the medical device disclosed herein.
Absstract of: US2025152049A1
The present invention relates to a glucose diffusion control layer solution for a continuous blood glucose-measuring biosensor, a glucose diffusion control layer for a continuous blood glucose-measuring biosensor, comprising the same, and a continuous blood glucose-measuring biosensor comprising the same. More specifically, the present invention relates to: a glucose diffusion control layer solution for a continuous blood glucose-measuring biosensor, in which, by using only a substance of which biocompatibility has been verified, stability can be ensured even when injected into the human body, and glucose permeability and water absorbance can be controlled; a glucose diffusion control layer for a continuous blood glucose-measuring biosensor, comprising the same; and a continuous blood glucose-measuring biosensor comprising the same.
Absstract of: US2025152045A1
A glucose detection or monitoring system that includes a VCSEL laser with one or more active regions having quantum wells and barrier. The active regions are surrounded by one or more p-n junctions. The one or more active regions can include a selected shape structure, and one or more tunnel junctions (TJ). One or more apertures are provided with the selected shape structure, one or more buried tunnel junctions (BTJ) or oxide confine apertured, additional TJ's, planar structures and or additional BTJ's created during a regrowth process that is independent of a first growth process with a VCSEL output determined in response to a monitoring application of the VCSEL, the VCSEL having an HCG grating and a bottom DBR. A housing of a smartwatch interior houses the VCSEL laser. The smartwatch includes one or more of a display, an optical sensor, one or more electrodes, SIM card slot, speaker, microphone, charging pins, and a band.
Absstract of: AU2023373672A1
Invasive glucose sensors and noninvasive glucose sensors may be used in conjunction to improve glucose management for a user. The rate of change (ROC) of glucose levels from a noninvasive glucose sensor may be used rather than or in conjunction with a glucose level of the user from a CGM. A basal insulin delivery rate to the user may be adjusted responsive to the ROC glucose level data from the noninvasive sensor. The glucose level ROC from a noninvasive glucose sensor may be used to predict future glucose level ROCs of the user between operational cycles of an insulin delivery device and/or to identify possible hypoglycemic or hyperglycemic events. These predicted future glucose level ROCs may be used in a cost function of the control system of the insulin delivery device to select basal insulin delivery doses. Glucose level readings may be used to calibrate a noninvasive glucose level sensor.
Absstract of: WO2025099149A1
The invention concerns a method for determining a substance concentration in a sample comprising liquid containing particles, in particular glucose in blood, wherein a refractive index of the liquid is dependent on a concentration of the substance dissolved therein and a density of particles in the liquid is substantially constant. The method comprises obtaining a PPG first signal during a first time period and estimating a set of complex coefficients from the first obtained signal. The phase difference is determined from those coefficient or a subset thereof and subsequently used to derive the substance concentration or a change in the substance concentration.
Absstract of: US2025152816A1
Systems and methods for integrating a continuous glucose sensor 12, including a receiver 14, a medicament delivery device 16, a controller module, and optionally a single point glucose monitor 18 are provided. Integration may be manual, semi-automated and/or fully automated.
Absstract of: US2025152048A1
The present disclosure discloses to a health analysis method for blood glucose management, a health analysis apparatus for blood glucose management, an electronic device and a storage medium. The health analysis method includes: obtaining a plurality of blood glucose data of a user during a detection time period, wherein the plurality of blood glucose data include a current blood glucose value detected at a current moment; determining a time in range ratio of the user according to the plurality of blood glucose data and a glucose standard range; predicting a time when a blood glucose value of the user meets the glucose standard range and a time when the time in range ratio meets a qualified condition according to the current blood glucose value and the time in range ratio; and analyzing predicted results to provide a blood glucose prediction curve to the user.
Absstract of: US2025152046A1
The blood glucose detector (BGD) is placed on user's wrist, ear, nose, or other skin surface, at a NIR light infiltration location to detect arterial blood flow. Earlier-obtained baseline BG data is obtained via BGD and conventionally-obtained BG data. The user-wearable housing or body-mounted BGD system includes processor, memory, and NIR transmitter/sensor. BG baseline data is stored in memory. The NIR transmitter/sensor disposed on infiltration location. In detection, transmitter generates light in predetermined narrow band within NIR range 1350-1800 nm. Sensor detects reflected light from arterial BG as then-detected BG signal. Memory stores a subcutaneous interference factor (SIF) contributory value for NIR narrow band. Onboard processor (or smart phone APP) correlates the detected BG signal with the baseline as modified by the SIF value and generates displayable BG level to user via user-wearable housing or the user interface display on the smart phone as connected to body-mounted BGD system.
Absstract of: WO2025099153A1
The invention concerns a method for determining a substance concentration in a sample comprising liquid containing particles, in particular glucose in blood, wherein a refractive index of the liquid is dependent on a concentration of the substance dissolved therein and a density of particles in the liquid is substantially constant. The method comprises obtaining a PPG first signal during a first time period and estimating at last a portion of a noise spectrum from the first obtained signal in particular the frequency domain. At least a portion of the noise spectrum is used to derive the substance concentration or a change in the substance concentration.
Absstract of: US2025152814A1
Techniques for therapy delivery for diabetes treatment are provided. In some embodiments, the techniques may involve identifying an object as a food item based on a representation of the object. In some embodiments, the techniques may involve generating nutrition information or volume information of the food item. The techniques may involve determining that the nutrition information or the volume information of the food item exceeds a threshold. The techniques may involve determining that the patient's glucose level will rise based on the determination the nutrition information or the volume information of the particular food item exceeds the threshold. The techniques may involve generating therapy information for a patient based on the determination that the patient's glucose level will rise. The techniques may involve automatically administering insulin to the patient to cause the glucose level of the patient to lower to within a predetermined range and based on the therapy information.
Absstract of: US2025152103A1
Provided is a sensor applicator assembly for a continuous glucose monitoring system and provides a sensor applicator assembly for a continuous glucose monitoring system, which is manufactured with a sensor module assembled inside an applicator, thereby minimizing additional work by a user for attaching the sensor module to the body and allowing the sensor module to be attached to the body simply by operating the applicator, and thus can be used more conveniently. A battery is built in the sensor module and a Separate transmitter is connected to the sensor module so as to receive power supply from the sensor module and be continuously used semi-permanently, thereby making the assembly economical. The sensor module and the applicator are used as disposables, thereby allowing accurate and safe use and convenient maintenance.
Absstract of: US2025152107A1
A diabetes risk detection method, an electronic device, and a system are disclosed and are applied to the field of terminal technologies, to resolve a problem in the conventional technology that an obtained diabetes risk detection result is inaccurate when time for collecting a photoplethysmography signal is short. The method includes: obtaining first data and second data, where the first data includes a photoplethysmography (PPG) signal obtained via a PPG sensor, and the second data includes one or more of the following: diet data, exercise data, physical symptom data, drug use data, sleep data, or emotion data; determining a diabetes risk detection result based on the first data and the second data; and outputting the diabetes risk detection result to prompt a user with a health status.
Absstract of: US2025152060A1
Method and apparatus for optimizing analyte sensor calibration including receiving a current blood glucose measurement, retrieving a time information for an upcoming scheduled calibration event for calibrating an analyte sensor, determining temporal proximity between the current blood glucose measurement and the retrieved time information for the upcoming calibration event, initiating a calibration routine to calibrate the analyte sensor when the determined temporal proximity is within a predetermined time period, and overriding the upcoming scheduled calibration event using the current blood glucose measurement are provided.
Absstract of: US2025152058A1
Embodiments of the invention provide compositions useful in implantable devices such as analyte sensors as well as methods for making and using such compositions and devices. In typical embodiments of the invention, the device is a glucose sensor comprising a polymeric composition disposed on a flexible assembly within the sensor that includes amounts of one or more immunosuppressant agents designed to provide such sensors with improved material properties such as enhanced biocompatibility.
Absstract of: US2025152053A1
A glucose measurement device comprising a light emitting device comprising an SWIR phosphor having emission wavelengths in the range of 1600-2200 nm, the SWIR phosphor comprising a structurally disordered garnet material, a sensitizer ion, and at least one rare earth emitter ion, and a infrared light detector arranged to detect the intensity of short wavelength infrared light emitted by the light emitting device and reflected by a sample. The emission spectra provided by the light emitting device having a high temperature stability at infrared absorption minima and maxima wavelengths of glucose in tissue.
Absstract of: US2025152054A1
Various embodiments of a user-wearable device can comprise a frame configured to mount on a user. The device can include a display attached to the frame and configured to direct virtual images to an eye of the user. The device can also include a light source configured to provide polarized light to the eye of the user and that the polarized light is configured to reflect from the eye of the user. The device can further include a light analyzer configured to determine a polarization angle rotation of the reflected light from the eye of the user such that a glucose level of the user can be determined based at least in part on the polarization angle rotation of the reflected light.
Absstract of: US2025152051A1
This application provides a blood glucose assessment method, an electronic device, and a computer-readable storage medium. The method is applied to a wearable device, and includes: collecting vital sign data of a user in a first cycle of blood glucose assessment; performing blood glucose assessment on the user based on valid vital sign data in the vital sign data, to obtain a blood glucose assessment result corresponding to the first cycle; displaying the blood glucose assessment result corresponding to the first cycle; and automatically starting a next cycle of the blood glucose assessment. According to the technical solutions of this application, blood glucose assessment can be periodically and automatically performed, helping reduce operation complexity for the user.
Absstract of: EP4552566A1
Creatinine levels may be monitored as a measure of kidney function. Conventionally, blood and/or urine tests are used for this purpose. Analyte sensors capable of monitoring creatinine in vivo may comprise: a sensor tail comprising at least a first working electrode, a creatinine-responsive active area disposed upon a surface of the first working electrode, a first membrane that is permeable to creatinine and overcoats the creatinine-responsive active area, and an oxygen scavenger located upon the sensor tail in proximity to the creatinine-responsive active area. The creatinine-responsive active area comprises a first electron transfer agent, a first polymer, and an enzyme system comprising multiple enzymes, particularly creatinine amidohydrolase, creatine amidohydrolase, and sarcosine oxidase, that are capable of acting in concert to facilitate detection of creatinine. An oxidase enzyme may serve as the oxygen scavenger, particularly glucose oxidase when detecting creatinine in fluids also containing glucose.
Absstract of: EP4552567A1
Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
Absstract of: EP4552558A2
The present disclosure relates to a body attachment unit for continuous blood glucose measurement, in which the body attachment unit is manufactured so as to be assembled in an applicator, thereby minimizing additional work and allowing attachment of the body attachment unit to a body simply by operation of the applicator. In particular, a wireless communication chip is provided in the body attachment unit to enable communication with an external terminal, thereby enabling simple and convenient use without performing additional work of connecting a separate transmitter, and allowing easier maintenance. In addition, activation occurs by a user's operation after the body attachment unit is attached to the body, such that an activation start point in time can be adjusted to an appropriate point in time according to the user's needs, and activation occurs in a stabilized state, thereby providing the body attachment unit allowing more accurate blood glucose measurement.
Absstract of: US2024189504A1
Embodiments disclosed herein are directed to ambulatory infusion pump systems that integrate a CGM sensor with an ambulatory infusion pump. An electrical connection can be established between the CGM sensor and the pump such that no wireless connectivity between the devices is required.
Nº publicación: EP4552565A1 14/05/2025
Applicant:
ABBOTT DIABETES CARE INC [US]
Abbott Diabetes Care, Inc
Absstract of: EP4552565A1
Multiple enzymes may be present in one or more active areas of an electrochemical analyte sensor for detecting one or more different analytes. In particular, an analyte sensor may comprise a sensor tail configured for insertion into a tissue and one or more working electrodes having a glucose-responsive active area and an ethanol-responsive active area to detect glucose and ethanol in vivo.