Absstract of: US2025346542A1
Embodiments of the present invention relates to two improved catalysts and associated processes that directly converts carbon dioxide and hydrogen to liquid fuels. The catalytic converter is comprised of two catalysts in series that are operated at the same pressures to directly produce synthetic liquid fuels or synthetic natural gas. The carbon conversion efficiency for CO2 to liquid fuels is greater than 45%. The fuel is distilled into a premium diesel fuels (approximately 70 volume %) and naphtha (approximately 30 volume %) which are used directly as “drop-in” fuels without requiring any further processing. Any light hydrocarbons that are present with the carbon dioxide are also converted directly to fuels. This process is directly, applicable to the conversion of CO2 collected from ethanol plants, cement plants, power plants, biogas, carbon dioxide/hydrocarbon mixtures from secondary oil recovery, and other carbon dioxide/hydrocarbon streams. The catalyst system is durable, efficient and maintains a relatively constant level of fuel productivity over long periods of time without requiring re-activation or replacement.
Absstract of: US2025346486A1
An embodiment of the present disclosure provides a production apparatus for high purity hydrogen, the production apparatus including: a decomposition reaction unit configured to decompose ammonia through ammonia decomposition reaction and discharge reaction products including hydrogen and nitrogen produced from the ammonia decomposition reaction and non-reacting ammonia; an adsorption refinement unit configured to discharge intermediate refined products by separating or removing ammonia from the reaction products; and a hydrogen separation membrane configured to discharge a high-purity hydrogen product by refining high-purity hydrogen by separating and filtering the intermediate refined products.
Absstract of: US2025346485A1
Photocatalytic water-splitting processes are described using an aqueous solution of at least one neutral salt, where the process is conducted at a temperature of 200-400° C. When compared with conventional photocatalytic water-splitting processes, the processes of the invention give rise to notably increased activity and quantum efficiency.
Absstract of: US2025346544A1
Electrical power derived from a renewable energy source is used to perform water electrolysis to produce oxygen and hydrogen. A flue gas and heat are produced from combustion of a fuel using at least a portion of the oxygen generated by electrolysis. A feed stream including hydrocarbon oil is hydroprocessed using the generated heat and at least a portion of the hydrogen generated by electrolysis to produce a product including a saturated hydrocarbon. At least a portion of the flue gas is hydrogenated using at least a portion of the hydrogen generated by electrolysis to produce a second product stream including a hydrocarbon, an oxygenate, or both.
Absstract of: US2025345783A1
The present invention relates to a catalyst for an ammonia decomposition reaction, a method for preparing same, and a method for producing hydrogen by using same. More specifically, the present invention relates to a method for preparing a catalyst for an ammonia decomposition reaction, which economically and efficiently supports highly active ruthenium on a lanthanum-cerium composite oxide support, thereby preparing a catalyst that exhibits a higher ammonia conversion rate than conventional catalysts for an ammonia decomposition reaction, to a catalyst for an ammonia decomposition reaction prepared by the same method, and a method for producing hydrogen by using the same.
Absstract of: AU2024285985A1
A method of producing a hydrogen stream and an oxygen stream and passing the hydrogen stream and the oxygen stream to a reverse water-gas shift reactor is described, the method comprising: providing a water stream to an electrolysis system configured to form: a hydrogen stream at a first pressure, and an oxygen stream at a second pressure; passing the hydrogen stream, a carbon dioxide stream, and the oxygen stream to the reverse water-gas shift reactor, wherein the first pressure is lower than the second pressure.
Absstract of: AU2025202385A1
The present invention is an adhesive-fixed electrolysis module comprising a single stack, the single stack having a separator, a pair of bipolar plates, a pair of gaskets, a pair of diffusion layers, a pair of electrodes, and a cell frame, wherein the bipolar plates, the gaskets, 5 the diffusion layers, and the electrodes are sequentially arranged on the cathode and anode sides, respectively, with respect to the separator, forming a symmetrical structure, wherein the separator, the bipolar plates, the gaskets, the diffusion layers, and the electrodes are stacked in a zero-gap manner within the cell frame, and wherein the bipolar plates are adhered and fixed to the cell frame using an adhesive, thereby simplifying product assembly 10 and reducing assembly costs compared to a single stack fixing method using welding, riveting, bolting, etc. between conventional parts. The present invention is an adhesive-fixed electrolysis module comprising a single stack, the single stack having a separator, a pair of bipolar plates, a pair of gaskets, a pair of 5 diffusion layers, a pair of electrodes, and a cell frame, wherein the bipolar plates, the gaskets, the diffusion layers, and the electrodes are sequentially arranged on the cathode and anode sides, respectively, with respect to the separator, forming a symmetrical structure, wherein the separator, the bipolar plates, the gaskets, the diffusion layers, and the electrodes are stacked in a zero-gap manner within the cell frame, and wher
Absstract of: AU2025202787A1
Abstract The invention relates to the coating of anion exchange membranes (AEM) with catalytically active substances. The CCM thus obtained are used in electrochemical cells, especially for alkaline water electrolysis. It was an object of the invention to specify a process for producing a CCM by direct 5 coating which maintains the necessary planarity of the AEM and ideally avoids the use of lost films and eschews CMR substances. Swelling shall also be minimized. The process shall also be performable with fluorine-free ionomers. The invention is based on the finding that the addition of certain organic substances has the result that the AEM swells only to a small extent, if at all (antiswelling agent). It has surprisingly been found that substances suitable as antiswelling agents 10 are identifiable by their solubility behaviour, more particularly by their Hansen parameters. Fig. 4 accompanies the abstract Abstract The invention relates to the coating of anion exchange membranes (AEM) with catalytically active substances. The CCM thus obtained are used in electrochemical cells, especially for alkaline water 5 electrolysis. It was an object of the invention to specify a process for producing a CCM by direct coating which maintains the necessary planarity of the AEM and ideally avoids the use of lost films and eschews CMR substances. Swelling shall also be minimized. The process shall also be performable with fluorine-free ionomers. The invention is based on the finding that th
Absstract of: AU2024276790A1
The specification describes a process for preparing an oxygen evolution reaction catalyst, comprising the steps of: (i) combining iridium powder and a peroxide salt to produce a powder mixture; (ii) carrying out thermal treatment on the powder mixture; (iii) dissolving the product from (ii) in water to produce a solution; (iv) reducing the pH of the solution from (iii) to affect a precipitation and form a solid and a supernatant; (v) separating the solid from the supernatant; and (vi) drying the solid. An oxygen evolution catalyst obtainable by the process is also described.
Absstract of: AU2024249829A1
The invention relates to an electrolytic method for producing carbon dioxide, having the following steps: a. anodically oxidizing hydrogen gas within an electrolysis cell, an acidic oxidation product being obtained; b. reacting the acidic oxidation product with an aqueous electrolyte solution within the electrolysis cell, an acidic aqueous solution being obtained; c. cathodically reducing water within the electrolysis cell, an alkaline aqueous solution and hydrogen gas being obtained; d. reacting the alkaline aqueous solution outside of the electrolysis cell with a gas which contains carbon dioxide, wherein the gas is air in particular, in order to obtain a carbonate-containing aqueous solution; and e. reacting the carbonate-containing alkaline aqueous solution with the acidic aqueous solution outside of the electrolysis cell in order to obtain dissolved carbon dioxide gas.
Absstract of: WO2025233819A1
An AEM electrolyzer comprises end structural elements (20, 30) and an electrolytic structure (22) comprising a plurality of electrolytic cells (40) to which are associated respective structural support and sealing assemblies (50) completely made of elastomeric material and in which are obtained portions of anode side inlet channels (23) and outlet channels (24) and of cathode side inlet channels (25) and outlet channels (26), while a pressurizable chamber is obtained between at least one of the end elements (20, 30) and the electrolytic structure (22) to compensate the gas pressure in the electrolytic structure itself. An AEM electrolyzer is obtained with reduced production costs and high electrical efficiency.
Absstract of: WO2024129657A1
The present invention provides a device for carbon dioxide recovery from alkaline water using a module having at least three compartments where each compartment is separated by an electrode pair (anode and cathode) with electrochemical reactions occurring at the electrodes. The electrodes can be in a unipolar or bipolar configuration. Multiple electrochemical modules can be electrically connected in series, in parallel, or in a combination of both series and parallel. Also disclosed it the related process for recovering carbon dioxide from alkaline water.
Absstract of: EP4647396A1
There is described a hydrogen production system comprising: a gasification sub-system to produce a syngas stream from a biomass and/or refuse derived fuel feed stream; and a steam methane reformer (SMR) sub-system to produce an SMR syngas stream from a hydrocarbon feed, and to produce a low carbon hydrogen final product by integrating the syngas stream from the gasification sub-system and the SMR syngas stream.
Absstract of: EP4647532A2
The present disclosure advantageously provides an improved cooling system for an electrochemical plant. The configurations disclosed herein provide advantages and improvements in a cooling system for the electrochemical plant. The cooling system advantageously cools multiple subsystems within the plant using dry coolers, thereby easing maintenance and access to various components within the plant, minimizing or reducing the amount of process piping within the plant used to cool the multiple subsystems, and reducing the complexity of the overall plant.
Absstract of: EP4647534A1
Eine Plattenanordnung (1) eines Stapels elektrochemischer Zellen (2) umfasst ein zumindest teilweise als 3D-Druck-Element ausgebildetes Plattenelement (3), in welchem mehrere Schichten (6, 7, 8) parallel zueinander angeordnet sind, die jeweils durchbrochene, zur Durchleitung eines Fluids geeignete Strukturen aufweisen, wobei die Feinheit der Durchbrechungen (17) von Schicht (6, 7, 8) zu Schicht (6, 7, 8) variiert, und wobei ein Temperatursensor (19), der an ein Kabel (20) angeschlossen ist, welches durch mehrere der genannten Schichten (6, 7, 8) verläuft, an diejenige Schicht (8) grenzt, welche die feinsten Durchbrechungen (17) aufweist.
Absstract of: EP4647161A1
The present disclosure relates to a catalyst for decomposition of ammonia and a method for decomposition of ammonia.
Absstract of: KR20250160293A
본 발명의 일 실시예에 따른 암모니아를 이용한 메탄올 생산 방법은, a) 선박에 저장된 암모니아가 접안 부두에 정차된 탱크로리로 운송 및 저장되는 단계; b) 상기 탱크로리에 저장된 암모니아의 일부가 친환경 연료로서 발전소로 공급된 후에 상기 발전소의 발전에 사용되는 단계; c) 상기 발전소가 암모니아를 기반으로 발전하는동안 생성되는 이산화탄소를 포집, 분리 및 액화시킨 후 저장하는 단계; d) 상기 발전소로 공급되지 않고 상기 탱크로리에 남은 나머지 암모니아가 수소 생산소로 운송되며, 상기 수소 생산소에서 수소와 질소로 분해됨으로써 수소를 생산하는 단계; 및 e) 메탄올 생산소가 상기 c) 단계에서 저장된 이산화탄소와, 상기 d) 단계에서 생산된 수소를 이용하여 메탄올을 생산하는 단계;를 포함할 수 있다.
Absstract of: AU2025202385A1
The present invention is an adhesive-fixed electrolysis module comprising a single stack, the single stack having a separator, a pair of bipolar plates, a pair of gaskets, a pair of diffusion layers, a pair of electrodes, and a cell frame, wherein the bipolar plates, the gaskets, 5 the diffusion layers, and the electrodes are sequentially arranged on the cathode and anode sides, respectively, with respect to the separator, forming a symmetrical structure, wherein the separator, the bipolar plates, the gaskets, the diffusion layers, and the electrodes are stacked in a zero-gap manner within the cell frame, and wherein the bipolar plates are adhered and fixed to the cell frame using an adhesive, thereby simplifying product assembly 10 and reducing assembly costs compared to a single stack fixing method using welding, riveting, bolting, etc. between conventional parts. The present invention is an adhesive-fixed electrolysis module comprising a single stack, the single stack having a separator, a pair of bipolar plates, a pair of gaskets, a pair of 5 diffusion layers, a pair of electrodes, and a cell frame, wherein the bipolar plates, the gaskets, the diffusion layers, and the electrodes are sequentially arranged on the cathode and anode sides, respectively, with respect to the separator, forming a symmetrical structure, wherein the separator, the bipolar plates, the gaskets, the diffusion layers, and the electrodes are stacked in a zero-gap manner within the cell frame, and wher
Absstract of: JP2025169014A
【課題】水を満遍なく分散させることにより、局所的な温度上昇が生じにくく、水素ガス及び酸素ガスを効率よく発生させやすい水素・酸素発生装置用の電極板と、該電極板を備える水素・酸素発生装置とを提供する。【解決手段】電極板10の一端側に形成された少なくとも一つの水供給孔101aと、電極板10の他端側に形成された少なくとも一つの水排出孔101bと、少なくとも一つの水供給孔101aから供給された水が電極板10に沿って少なくとも一つの水排出孔101bへと流れる途中で通過する領域において、少なくとも一つの水供給孔101aと少なくとも一つの水排出孔101bとを結ぶ仮想直線VSLを基準として、仮想直線VSLの近くには流水に与える抵抗が大きい大抵抗部113を有し、仮想直線VSLから遠くには流水に与える抵抗が小さい小抵抗部114を有する水整流部と、を備える、水素・酸素発生装置用の電極板10である。【選択図】図3
Absstract of: AR133932A2
En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.
Absstract of: AR133930A2
En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.
Absstract of: KR20250160290A
본 발명의 일 실시예에 따른 수소 충전 시스템은, 복수의 수소 튜브 트레일러에 수소를 순차적으로 충전하기 위한 수소 충전 시스템에 있어서, 외부로부터 투입되는 물을 분해하여 수소를 생성하는 수전해기; 상기 수전해기에서 생성된 수소를 일시적으로 저장하는 버퍼탱크; 상기 버퍼탱크로부터 배출되는 수소의 압력인 제1 압력값을 측정하는 제1 압력센서; 상기 버퍼탱크로부터 분기된 후 이송되는 수소를 압축시키는 압축기; 상기 압축기로부터 압축되되, 상기 수소 튜브 트레일러에 충전될 수소를 저장하는 저장탱크; 상기 버퍼탱크로부터 분기된 후 상기 압축기를 향하지 않는 수소 또는 상기 압축기에서 압축된 후 상기 저장탱크로 저장되기 전에 우회되는 수소를 내측에 수용하는 수소배관; 상기 수소배관의 내측에 수용된 수소의 압력인 제2 압력값을 측정하는 제2 압력센서; 상기 제1 압력값과 제2 압력값을 이용하여 수소의 이송방향을 제어하는 제어부; 및 상기 복수의 수소 튜브 트레일러에 수소가 충전되도록 상기 저장탱크가 일측에 배치되는 충전 스테이션;을 포함할 수 있다.
Absstract of: CN120226171A
The present disclosure relates to an electrochemical cell stack comprising solid state electrochemical cells (20), an electrically conductive separator (30); and a sealing element (40). The separator comprises: a central portion (31) having an oppositely recessed support surface (32) supporting the solid oxide cell, and a contact surface (34) opposite the recessed support surface contacting an adjacent solid state electrochemical cell; and a boundary portion (36) providing a relatively elevated top (37) and upstanding side walls (38). A sealing element (40) extends between an elevated top surface of the boundary portion and an opposing support surface (39) of an adjacent bulkhead. The spacing distance between the concave support surface and the contact surface of the adjacent separator, defined by the combined height of the sealing element and the upstanding side wall, is matched to the thickness of the solid state electrochemical cell.
Absstract of: CA3271574A1
The invention relates to the coating of anion exchange membranes (AEM) with catalytically active substances. The CCM thus obtained are used in electrochemical cells, especially for alkaline water electrolysis. It was an object of the invention to specify a process for producing a CCM by direct 5 coating which maintains the necessary planarity of the AEM and ideally avoids the use of lost films and eschews CMR substances. Swelling shall also be minimized. The process shall also be performable with fluorine-free ionomers. The invention is based on the finding that the addition of certain organic substances has the result that the AEM swells only to a small extent, if at all (antiswelling agent). It has surprisingly been found that substances suitable as antiswelling agents 10 are identifiable by their solubility behaviour, more particularly by their Hansen parameters. Fig. 4 accompanies the abstract
Nº publicación: CN120936421A 11/11/2025
Applicant:
蒂森克虏伯新纪元股份有限及两合公司
Absstract of: AU2024237545A1
A method for generating and treating a two-phase outflow from one or more pressurised electrolyser stacks which are adapted to electrolyse water into hydrogen and oxygen, whereby a pump supplies a catholytic fluid flow from one first gas liquid gravitational separator vessel to the electrolyser stacks and whereby a further pump supplies an anolytic fluid flow from one second gas liquid gravitational separator vessel to the electrolyser stacks, and whereby at least one cyclone type gas liquid separator receives combined outflows from the catholytic chambers and/or receives combined outflows from anolytic chambers respectively inside corresponding gravitational gas liquid separator vessel whereby further, the at least one cyclone type gas liquid separator separates the gas from the liquid along a generally horizontal cyclonic rotation axis inside the gas liquid gravitational separator vessel. An electrolyser system is also provided.