Absstract of: CN121123338A
本发明提供一种La0.9Sr0.1Al0.95Zn0.05O3‑δ基复合电解质及其制备方法与应用,涉及电池电解质技术领域。一种La0.9Sr0.1Al0.95Zn0.05O3‑δ基复合电解质,包括La0.9Sr0.1Al0.95Zn0.05O3‑δ、碳酸盐。其中La0.9Sr0.1Al0.95Zn0.05O3‑δ的制备方法,包括以下步骤:将La盐、Sr盐、Al盐、Zn盐按目标产物化学计量比混合,加水溶解,得到溶液A;将柠檬酸、EDTA搅拌溶解,得到溶液B;将溶液B加入到溶液A中,搅拌、调节pH,得到混合溶液;将混合溶液进行超声处理、微波处理,即得。本发明提供的复合电解质具有高电导率,可应用于中低温固体氧化物燃料电池。
Absstract of: CN121108930A
本发明涉及燃料电池技术领域,公开一种高温燃料电池粘结剂、制备方法与应用。所述高温燃料电池粘结剂的制备方法,包括如下步骤:常温下,将聚醚型苯并咪唑溶解于有机溶剂中形成纺丝液;将所述纺丝液经过静电纺丝得到纤维原丝,将所述纤维原丝切割为纤维短丝;将所述纤维短丝分散于分散液中,得到所述高温燃料电池粘结剂。本发明制备的一种聚醚型苯并咪唑的纤维短丝,一方面,由于聚醚型苯并咪唑与高温膜成分相同,能改善膜与催化层的相容性;另一方面,短纤维可以吸收催化层中的磷酸,减少磷酸占据活性位点和堵塞孔隙,从而提高催化剂的利用效率和气体传输通道的构建。
Absstract of: CN121111462A
本发明涉及一种化学回热氨内燃机燃料电池混合动力系统及控制方法,属于混合动力系统技术领域,以解决传统动力系统燃料利用率低、能量效率不高,以及氨裂解与内燃机冷却系统分离导致的系统体积大、能量浪费等问题。本发明利用氨燃料充当内燃机缸套的冷却介质同时燃料发生裂解反应生成氢气和氮气等裂解气,裂解气再通过膨胀涡轮做功降压后进入燃料电池内与空气发生电化学反应发出电能,燃料电池尾气有未反应完的燃料成分再通入内燃机内燃烧做功带动发电机发电。本发明实现了化学回热以及裂解器与内燃机冷却缸套的一体化。裂解气膨胀做功和燃料电池尾气再通入内燃机内燃烧,实现了能量的梯级利用,进而实现了动力系统的高燃料利用率和高能量效率。
Absstract of: CN121123322A
本发明公开了一种基于模糊ADRC的高温燃料电池HT‑PEMFC温控方法及系统,方法包括构建包括电堆、氢气供应管线、空气供应管线、热油回路、数据采集装置、直流电子负载和主机的HT‑PEMFC系统;根据HT‑PEMFC系统中各装置的运行数据通过基于多物理场Modelica语言平台Dymola建立HT‑PEMFC系统的温度动态模型;设计模糊带宽调整策略Fuzzy‑ADRC;将模糊带宽调整策略Fuzzy‑ADRC用于在负载电流扰动、循环泵流量扰动下电堆温度的稳定控制。本发明解决了传统ADRC在强扰动下的“过补偿能耗问题”和PID的“高调节能耗问题”,是HT‑PEMFC系统热管理的最优控制器选择之一。
Absstract of: CN121123321A
本发明具体公开了一种基于粒子群算法的全钒液流电池多目标运行优化控制方法,涉及全钒液流电池储能系统控制技术领域。该方法首先采集VRB系统实时运行数据并预处理;然后在充放电模式下构建包含充电时间、输入/输出能量和泵能耗的多目标优化函数;接着以充放电电流密度和电解液流量为决策变量、以温度、电压、SOC值为约束条件,通过粒子群算法优化求解得到最优参数;最后结合数据采集、函数计算、参数调节与仿真反馈实现全流程自动闭环控制。该方法通过多目标动态优化、决策变量与约束条件及闭环自适应控制,实现了全钒液流电池充电时间缩短、系统效率提升、泵能耗降低的协同优化,增强了系统运行安全性、稳定性与复杂场景适应性。
Absstract of: CN121123341A
本发明提供了一种电堆装配线,包括预装支线、备料机构、转运机构和总装支线,预装支线与总装支线相邻设置,备料机构设置于总装支线的一端,转运机构处于总装支线与备料机构之间,备料机构用于储备隔膜、双极板和密封垫,预装支线用于装配液流框、隔板和毯毡以构成电极,转运机构用于将隔膜、双极板和密封垫以及相邻预装支线上的电极转运至总装支线以堆叠形成电堆。本发明中,转运机构与备料机构、总装支线以及临近的预装支线之间的距离相当,能够很好地将备料机构上的双极板、密封垫和隔膜,以及预装支线上的电极转运支总装支线上堆叠形成电堆,空间布局合理,占用生产空间小,有利于降低成本,提高生产效率。
Absstract of: CN121109766A
本发明属于铂族金属二次资源回收领域,公开了一种氢燃料电池膜电极铂基催化剂一步光化学闭环回收方法,以含氮酰胺类和含氯烃类构成的有机浸出液,在可见光下激发有机酸铁盐一步氧化溶解氢燃料电池膜电极铂催化剂的方法。与现有技术相比,本发明解决了环境污染、回收操作冗杂、回收成本高昂和铂溶出率低等问题。本发明所述的从氢燃料电池膜电极催化剂中回收铂的方法,其贵金属的溶出率可达95%左右,其中最佳的溶出率可达99%以上,且本发明所述方法的操作条件温和、低耗能、绿色低碳且适用场景丰富。
Absstract of: CN121123334A
本发明涉及一种使用等离子体作为阴极的固体氧化物燃料电池,其包括依次设置的阳极、电解质层以及阴极;所述固体氧化物燃料电池的阳极为多孔的金属陶瓷材料,固体氧化物燃料电池的电解质层为可以传导离子的陶瓷材料,所述固体氧化物燃料电池的阴极为氧等离子体。本发明通过使用等离子体代替传统的SOFC阴极,从而实现对氧气的活化,加快反应速度,能够改善ORR反应的动力学特性,降低传统SOFC阴极对高性能催化剂的依赖。
Absstract of: CN121123305A
本发明属于燃料电池催化剂制备技术领域,涉及一种基于弱还原剂液相法制备高分散铂/科琴黑催化剂的方法及其在燃料电池中的应用,发现高温预处理KB载体配合弱还原剂液相还原的协同效应,高温处理后的KB表面缺陷与弱还原剂的缓释还原特性结合,避免了弱还原剂导致的粒径分布不均,显著提升铂分散性。本发明通过高温处理与弱还原剂协同作用,突破小粒径铂(2‑6nm)均匀负载的技术瓶颈。工艺绿色温和,适合规模化生产。催化剂在燃料电池中展现高活性(0.68V,2A/cm2)和高耐久性(5.1mV,30k圈)。
Absstract of: CN121123317A
本公开涉及一种氢燃料电池系统及其控制方法和车辆,氢燃料电池系统包括氢燃料电池、氢气反应舱、储氢罐、空气气路、第一输氢流路和第二输氢流路,氢气反应舱用于使氢气与空气中的氧气催化燃烧生成水;储氢罐用于储存氢气,储氢罐被配置为选择性地向氢燃料电池和/或氢气反应舱内供给氢气;空气气路用于向氢燃料电池和氢气反应舱供给空气,并将氢燃料电池和氢气反应舱产生的气体排出到大气,第一输氢流路的一端与储氢罐连通,另一端与氢燃料电池连通,第二输氢流路的一端与储氢罐连通,另一端与氢气反应罐连通。通过上述技术方案,能够实现氢气的减排。
Absstract of: CN121105278A
本发明涉及液流电池技术领域,具体涉及一种液流电池低接触电阻碳塑双极板分层模压成型方法,包括:S1.选取制备原料,所述制备原料包括导电物质和树脂;S2.沿双极板厚度方向,将双极板划分为2n‑1层;S3.采用制备原料,对每一层进行分层模压,制备分层板,树脂含量从第1层至第n层逐层递增,树脂含量从第2n‑1层至第n层逐层递增;S4.将每个所述分层板按序堆叠,在树脂的软化温度下进行合压模压,得到成型后的双极板。本发明通过中间层的高树脂含量层,整个双极板的机械强度得到保障,同时通过两侧高石墨含量层,双极板的接触电阻大幅降低,因此双极板的机械性能和导电性能得到兼容。
Absstract of: CN121123296A
本发明属于电池相关技术领域,公开了一种用于全钒液流电池的复合电极及其制备方法。本发明通过在酸处理的碳毡基底进行表面改性,依次构建多孔高熵氧化物(HEO)核和Bi单原子壳基(Bi‑N4@NC),以及析氢抑制基(Cr2O3纳米岛修饰)修饰,通过多孔高熵氧化物核的多元催化、铋单原子壳的电子调控及Cr2O3纳米岛位点屏蔽基的局部钝化,共同实现元素精准分工和空间功能分区,解决了复合电极的高密度运行、副反应根治和低成本长寿命的技术难题,平衡了析氢抑制与反应活性间的矛盾,在单一电极上同步实现了充电催化、放电催化和析氢抑制三功能协同,为高功率液流电池的电极设计提供了核心解决方案。
Absstract of: CN223665475U
本实用新型公开了一种复合供氢系统以及用氢设备。复合供氢系统包括甲醇存储器、水存储器、混合装置、反应室、催化燃烧器以及储氢装置,所述甲醇存储器、所述水存储器并列连接于所述混合装置,所述混合装置连接所述反应室,所述反应室用于连接用氢设备,所述反应室用于进行重整制氢反应或有机液态储氢放氢反应,所述催化燃烧器连接于所述反应室以用于维持所述反应室所需温度,所述储氢装置用于连接用氢设备以用于在系统冷启动阶段向用氢设备提供氢气,所述水存储器还用于连接用氢设备以用于收集来自用氢设备产生的水。本实用新型的复合供氢系统能够解决现有技术中甲醇重整制氢冷启动慢的问题,同时提高了全系统储氢密度。
Absstract of: CN121111494A
本发明涉及一种用于移动式发电场景的可变动态性能的SOFC‑GT‑ORC混合发电系统,包括多组分气体供应部分、固体氧化物燃料电池部分、燃机发电部分和有机朗肯循环热回收部分;本发明以甲烷为燃料气实现不同用电场景下的变动态性能运行,能实现在变工况频繁的、动态性能要求高的用电场景下通过系统双路径快速调控提升系统动态性能,而在用电需求稳定的场景下通过系统双路径快速调控降低动态性能提升系统发电效率,从而提升本发电系统在用户端场景下的匹配性。本系统通过将固体氧化物燃料电池与涡轮进行耦合来提升系统发电效率,同时通过耦合有机朗肯循环提升系统热效率,使得系统具有较高的热电效率,提升本发电系统的经济性和环保性。
Absstract of: CN121123324A
本发明涉及燃料电池技术领域,提供一种燃料电池的预活化方法,包括以下步骤:S1、燃料电池的阴极腔和阳极腔均通入惰性气体吹扫;S2、将温度为T1的冷却液通入燃料电池,维持时长t1;S3、在燃料电池的阴极腔通入高湿氮气吹扫,吹扫维持时长t2;所述高湿氮气的露点温度为T2,所述T2>T1;S4、将冷却液的温度调节为T3,保持高湿氮气吹扫,吹扫维持时长t3;所述T3>T1;S5、重复步骤S2至S4直至完成预活化。优点:本方案的预活化方法实现快速形成大量有效清理杂质的冷凝水,极大地提高燃料电池的活化效率。
Absstract of: WO2025253063A1
The present invention relates to a system (1) for treating gases laden with carbon dioxide emitted by a consumer, comprising a tank (10) for storing liquefied natural gas, a consumer configured to be supplied with a fuel produced from liquefied natural gas stored in the storage tank (10), a device (18) for compressing the gases laden with carbon dioxide, a device (22) for drying these gases laden with carbon dioxide, a device (28) for condensing the carbon dioxide present in the gases laden with carbon dioxide, and a device (30, 32) for separating the carbon dioxide present in the gases emitted by the consumer, the condensation device (28) being arranged between the drying device (22) and the separation device (30, 32).
Absstract of: WO2025253340A1
A fuel cell power module (1) for a fuel cell vehicle comprises a fuel cell stack arrangement (11) including a fuel cell stack (111), a hydrogen supply system (113), an oxidant supply system (114), and a cooling system (115). A hydrogen refuelling arrangement (12) includes a refuelling connector (121). A hydrogen storage arrangement (15) operates at a pressure below 100 bar and comprises metal hydride containers (151) with metal hydride material (1511), a hydrogen input/output pipeline (1512), and a heating and cooling arrangement (1513). A buffer hydrogen pressure cylinder (152) is connected via a check valve and a remotely operable isolating valve (1534). A cooling supply system (165) is provided for the metal hydride containers. A heat management system (16) comprises a first heat exchanger (161), a second heat exchanger (162), and a flow switching arrangement (164) to selectively thermally couple the metal hydride containers to either the fuel cell cooling system or the cooling supply system.
Absstract of: WO2025252605A1
A plate-shaped structure, for example a bipolar plate, for a fuel cell has: a flow field; inlet openings and outlet openings for an anode gas and/or a cathode gas and/or a coolant; and a plurality of recesses in at least one first main surface of the plate-shaped structure, said recesses being designed - to counteract a slipping of the plate-shaped structure relative to another plate-shaped structure when the plate-shaped structure and the other plate-shaped structure are stacked on top of one another and/or - to receive a filling material in order to counteract a slipping of the plate-shaped structure relative to another plate-shaped structure and/or in order to keep the plate-shaped structure and the other plate-shaped structure spaced apart when the plate-shaped structure and the other plate-shaped structure are stacked on top of one another.
Absstract of: WO2025252959A1
The invention relates to a silencer having a cavity (10) at least partially delimited by a housing (13), a silencing device (20), arranged within the cavity (10), for reducing noise of the exhaust gas flow (S), and a water separation device (30), arranged within the cavity (10) upstream of the silencing device (20), for separating water from the exhaust gas flow (S). A flow guiding device (23) that is arranged in a silencing chamber (21) has an expansion element (231) for radially expanding at least part of the exhaust gas flow (S) flowing through the inlet opening (211) and forms a return flow channel (230), within which a flow path for the exhaust gas flow (S) is provided, the flow direction (SR) of which runs counter to the main flow direction (R).
Absstract of: WO2025252554A1
In order to provide an electrochemical device comprising multiple electrochemical units which follow one another along a stacking direction and each comprise at least one perforated plate, a bipolar plate and a membrane arrangement, which electrochemical device easily allows for precise positioning of the membrane arrangement of one electrochemical unit relative to a further, at least partially metallic element of the same electrochemical unit and/or relative to an at least partially metallic element of another electrochemical unit during the assembly of the electrochemical device, according to the invention, each electrochemical unit comprises a positioning means for positioning the membrane arrangement in at least one transverse direction, orientated perpendicular to the stacking direction, relative to a further, at least partially metallic element of the same electrochemical unit and/or relative to an at least partially metallic element of another electrochemical unit.
Absstract of: WO2025252521A1
A polymer polymer electrolyte membrane fuel cell comprising a membrane-electrode assembly having an anode, a cathode and a polymer electrolyte membrane present between the anode and cathode, wherein a water-retaining diffusion layer is provided on the anode and a water-removing diffusion layer is provided on the cathode, which are designed in such a way that, during intended operation of the fuel cell, water produced in the cathode is removed by the water-removing diffusion layer, and a gas supply of hydrogen to the anode takes place via the water-retaining diffusion layer, wherein the hydrogen in the anode is split into protons and electrons and the protons are passed through an ionomer matrix included in the membrane-electrode assembly in a reaction direction, and the water-retaining diffusion layer has water-retaining properties such that, when the fuel cell is operating as intended, water is retained at least in the anode to provide humidification of the ionomer matrix and associated enhanced proton conduction, such that, in comparison to having a diffusion layer on the anode that is identical to the water-removing diffusion layer of the cathode, the fuel cell has at least one performance improvement measured on a polarization curve and preferably the performance improvement increases with increasing current density, wherein the ionomer matrix contains hydrocarbon ionomers.
Absstract of: WO2025252739A1
A hydrogen supply system (100) for a power generating system (200, 300) is described. The power generating system comprises an intake manifold (220) and a turbocharging system (240) for supplying charged air to the intake manifold (220). The hydrogen supply system (100) comprises a reformer device (110) comprising a reformer (111), the reformer device (110) configured to supply a power generator (201, 301) with hydrogen. Further described herein is a power generating system (200, 300) comprising the hydrogen supply system and a turbocharging system.
Absstract of: WO2025252277A1
The invention relates to a device for processing gases containing helium and hydrogen, comprising - a stacked gas separation device (2) which comprises a plurality of proton-permeable membranes (13) and which is designed as an electrochemical hydrogen pump provided for separating helium from a gas mixture, - a likewise stacked fuel cell (6) which is connected to the gas separation device (2), - a gas treatment system (10) which is designed to separate gas containing helium and hydrogen and which is electrically connected to the fuel cell (6) and fluidically connected to the gas separation device (2).
Absstract of: WO2025252401A1
The invention relates to a high-temperature electrolyser comprising corrugated interconnectors (4) arranged to improve the operation of the electrolyser and to an assembly (E1) for an electrochemical device (1), the assembly (E1) comprising an electrochemical cell (3), a first interconnector (4) and a second interconnector (4), the first interconnector and the second interconnector each having a surface (21, 22) which forms alternating concave parts (21A, 22A) and convex parts (21B, 22B), the first interconnector (4) forming first channels (62) which are each delimited by a respective one of the concave parts (21A) of the surface (21) of the first interconnector (4) and are arranged facing a first side of the electrochemical cell (3), the second interconnector (4) forming second channels (60) which are each delimited by a respective one of the concave parts (22A) of the surface (22) of the second interconnector (4) and are arranged facing a second side of the electrochemical cell (3).
Nº publicación: WO2025252384A1 11/12/2025
Applicant:
ELEMENT 22 GMBH [DE]
ELEMENT 22 GMBH
Absstract of: WO2025252384A1
A method of production of layered composite material packs for use as an electrode by a material bonding process, comprises: stacking multiple material layers to be bonded forming a pack, assembling several packs for forming a stack, with placing inert interface plates between adjacent packs (3) to separate the packs by the inert interface plates, placing inert interface plates on top and bottom of the stack, placing the stack in between a top and a bottom plate and connecting the top and bottom plates with constraining fixtures for forming a rack, whereas the material of the constraining fixtures is so chosen that their thermal expansion coefficient is smaller than a value of thermal expansion for the total of the stack, pressing towards each other the top and bottom plates to apply an initial pressing force, placing the rack into a furnace, heating up the furnace to a bonding temperature with a heating rate between 0.1K/min and 35K/min and applying a connecting pressure due to the difference in thermal expansion coefficients of the stack material and the constraining fixtures, holding the bonding temperature for a predetermined time to form a bond via material diffusion in between the material layers, cooling down the furnace, disassembling the stack and removing the bonded packs.