Resumen de: US2025293272A1
A bipolar plate includes an anode plate and a cathode plate. The anode plate has an interior side and an exterior side opposite the interior side. The cathode plate has an interior side and an exterior side opposite the interior side. The interior side of the cathode plate faces the interior side of the anode plate. The bipolar plate includes a bead region. A portion of the interior side of the anode plate at the bead region is spaced from a portion of the interior side of the cathode plate at the bead region. An enforcement layer is disposed between the interior side of the anode plate and the interior side of the cathode plate at the bead region. The enforcement layer is configured to resist compression forces experienced at the exterior side of the anode plate and the exterior side of the cathode plate at the bead region.
Resumen de: US2025293270A1
A method of preparing a bipolar plate for a fuel cell includes placing a sheet in a bipolar plate forming apparatus, deforming a first region the sheet in a first stage between a first die and a first punch, the first stage forming one or more walls and one or more apexes, deforming a second region of the sheet in a second stage between a second die and a second punch, the second region being arranged laterally on either side of the of the first region, the second stage forming at least one first flat and at least one second flat on either side of the one or more walls, and deforming a third region of the sheet in a third stage between a third die and a third punch, the third region being arranged laterally between the first region and the second region.
Resumen de: US2025293268A1
A core/shell catalyst, and, a phosphoric acid or a phosphonated ionomer contacting the core/shell catalyst in a fuel cell. The core/shell catalyst comprises a core surrounded by a shell, the core comprising palladium or a palladium-M1 alloy, the shell comprising a platinum-M2 alloy. M1 is chosen from scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper or zinc; and M2 is gold or silver. High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs, with phosphoric-acid-contained polymer matrix) employing a core/shell catalyst, and, a phosphoric acid or a phosphonated ionomer contacting the core/shell catalyst are disclosed.
Resumen de: US2025293274A1
A frame assembly includes an electrochemical cell, a frame, and a reinforcement system. The electrochemical cell includes a first catalyst layer, a second catalyst layer spaced apart from the first catalyst layer, and a membrane located between the first catalyst layer and the second catalyst layer. The frame includes an upper frame arranged above the membrane and a lower frame arranged below the membrane. The reinforcement system is configured to increase a mechanical stability of the electrochemical cell.
Resumen de: AU2024234465A1
Provided is a carbon-air secondary battery with which a large amount of stored electricity can be ensured, charge/discharge efficiency is high, and cycle characteristics are favorable. A secondary battery 1 has: a reactor 20 in which a negative electrode 21 is installed, which is separated from the outside by an electrolyte 23, and which is configured to store carbon deposited during charging; and a structure 60 that surrounds the reactor 20 and minimizes heat loss from the reactor 20 due to radiative heat transfer. During charging, carbon dioxide is electrolyzed on the surface of the negative electrode 21, carbon is precipitated on the negative electrode side which is a closed system, and oxygen is produced at the positive electrode 22 from oxide ions that are produced at the negative electrode 21 and that have permeated through the electrolyte 23. During discharging, oxide ions are produced from oxygen at the positive electrode 22, and carbon and/or carbon monoxide are electrochemically oxidized on the surface of the negative electrode 21 to produce carbon dioxide.
Resumen de: US2025293277A1
An apparatus for controlling a fuel cell includes a fuel cell with an anode and a cathode, an oxygen tank that supplies oxygen to the cathode, and a processor. The processor enables the fuel cell, in response to a request to enable the fuel cell with preset electric power being less than a reference value of a stack included in the fuel cell, adjusts an internal pressure of a cathode to a preset pressure by adjusting an amount of oxygen supplied from the oxygen tank to the cathode while driving an air compressor included in the fuel cell, based on enabling of the fuel cell, and controls at least one of driving of the air compressor or a pressure of oxygen based on that the electric power being less than the reference value and more than the preset electric power while the fuel cell outputs the electric power by the preset pressure.
Resumen de: US2025293267A1
An electrochemical cell is disposed of a fuel electrode layer, a solid electrolyte layer, and an air electrode layer, in this order. The air electrode layer includes a plurality of catalyst particles for an air electrode which is composed of a catalyst material, a plurality of electrolyte particles for the air electrode which is composed of a solid electrolyte material, and at least one pore. The catalyst material has a coefficient of linear thermal expansion at 700° C. within a range of greater than 15x10−6/K and less than 30x10−6/K. When a first total surface area of the catalyst particles is Scat, and a second total surface area of an interface portion where a first surface of the catalyst particles is in contact with a second surface of the electrolyte particles is Scat-ele, the air electrode lay has a value of Scat-ele/Scat of 0.6 or more.
Resumen de: US2025288978A1
The present disclosure relates to a multi-element catalyst and a method for preparing the same. The multi-element catalyst of the present disclosure, wherein a noble metal and a transition metal form an intermetallic crystal structure and are supported on a carbon support with strong binding force, can exhibit excellent durability, stability, and catalytic activity.
Resumen de: US2025289918A1
A pellet of a fluorinated polymer having groups convertible to ion exchange groups such that the fluorinated polymer has ion exchange capacity of at least 1.1 milliequivalent/g dry resin upon conversion of the convertible groups to ion exchange groups is provided. The pellet has a visible light transmittance of from 30 to 60% in a light wavelength range of 400 to 700 nm. An ion exchange membrane obtained by melt extrusion of the pellet is also provided.
Resumen de: US2025289716A1
Proposed is a carbon dioxide capture and carbon resource utilization system, for a fuel cell, using boil-off gas (BOG) generated from liquefied natural gas. The system includes a liquefied natural gas storage configured to store liquefied natural gas (LNG), a hydrocarbon reformer configured to react boil-off gas generated from liquefied natural gas storage with water input from outside, thereby generating a gas mixture containing hydrogen and carbon dioxide, a fuel cell configured to generate electric power by receiving hydrogen, a reactor configured to capture carbon dioxide by reacting carbon dioxide with a basic alkali mixture solution and to collect a reaction product containing the captured carbon dioxide and to separate a carbon dioxide reaction product and a waste solution from the reaction product, and a hydrogen generator configured to generate hydrogen and to supply the generated hydrogen to the fuel cell.
Resumen de: US2025289348A1
A vehicle power system including a fuel cell auxiliary power unit for providing clean, efficient power to a vehicle. The system generally includes a fuel cell with a first DC output and a heat output, a pressure vessel adapted to contain and provide pressurized hydrogen to the fuel cell, an electrical storage unit with a DC input coupled to the first DC output of the fuel cell. The electrical storage unit also has a second DC output. An inverter is coupled to the second DC output of the electrical storage unit to receive power, the inverter having a first AC output. The system can provide heat, AC power, and DC power to the vehicle.
Resumen de: WO2025193231A1
The present application relates to a monolithic interconnect (100), a methods of making monolithic interconnect (100), and to an electrochemical cell including such monolithic interconnects (100). The monolithic interconnect (100) is useful in a variety of articles and industrial applications..
Resumen de: WO2025189395A1
The present disclosure relates to a shutdown control method for a fuel cell, wherein the shutdown control method at least comprises the following steps: after obtaining a shutdown instruction for the fuel cell, purging the fuel cell with a purge gas; applying a test current to the fuel cell, detecting an output voltage of the fuel cell, and calculating a high-frequency resistance of the fuel cell based on the test current and the output voltage; adjusting the test current by gradually decreasing it in such a manner that the output voltage is maintained within a preset voltage range, wherein the preset voltage range has a maximum value less than or equal to a voltage threshold; stopping purging when the high-frequency resistance reaches a resistance target value, and finishing shutdown of the fuel cell. As a result, less water is generated through the gradually reduced applied test current during the purging process. The disclosure further relates to a corresponding computer program product, readable medium, a shutdown control device and a fuel cell system. The duration of the shutdown purging process can be shortened and performance degradation of the fuel cell caused by high output voltage can be reliably avoided.
Resumen de: DE102025109365A1
Eine elektrochemische Zelle konfiguriert, um eine mechanische Verschlechterung einer Luftelektrodenschicht zu unterdrücken, wodurch Spannungsschwankungen in der Zelle unterdrückt werden. Die elektrochemische Zelle (1) ist aus einer Brennstoffelektrodenschicht (2), einer Festkörperelektrolytschicht (3) und einer Luftelektrodenschicht (4) in dieser Reihenfolge aufgebaut. Die Luftelektrodenschicht (4) eine Vielzahl von Katalysatorteilchen für die Luftelektrode (41), die aus einem Katalysatormaterial, das Elektronenleitfähigkeit und Sauerstoffionenleitfähigkeit aufweist, gebildet ist, eine Vielzahl von Elektrolytteilchen für die Luftelektrode (42), die aus einem Festkörperelektrolytmaterial, das Sauerstoffionenleitfähigkeit aufweist, gebildet ist, und zumindest eine Pore (43), beinhaltet. Das Katalysatormaterial weist einen linearen Wärmeausdehnungskoeffizienten bei 700°C in einem Bereich von größer als 15×10-6/K und kleiner als 30×10-6/K auf. Wenn ein erster Gesamtoberflächenbereich der Katalysatorteilchen für die Luftelektrode SKatist und ein zweiter Gesamtoberflächenbereich eines Schnittstellenabschnitts, in dem eine erste Oberfläche der Katalysatorteilchen für die Luftelektrode mit einer zweiten Oberfläche der Elektrolytteilchen für die Luftelektrode (42) in Kontakt ist, SKat-Eleist, weist die Luftelektrode einen Wert von SKat-Ele/SKatvon 0,6 oder größer auf.
Resumen de: DE102024107012A1
Die hier offenbarte Technologie betrifft erfindungsgemäß ein Abgassystem 30 für eine Brennstoffzelle 20, wobei in einer Abgasleitung 40 eine Energieaufnahmeeinrichtung 50 zur Aufnahme von Energie enthalten ist und ein Katalysator 80 zur vorherigen Aufoxidation von gasförmigem Brennstoff führt. Damit kann die Leistung der Energieaufnahmeeinrichtung 50 verbessert werden. Die hier offenbarte Technologie betrifft erfindungsgemäß ferner ein Brennstoffzellensystem 10 mit einem solchen Abgassystem 30 sowie ein zugehöriges Verfahren.
Resumen de: DE102024202427A1
Ein Brennstoffzellensystem (2) umfasst wenigstens eine Brennstoffzelle (4) mit einer Anode (10) und einer Kathode (12), eine Wasserstoffzuleitung (6), die mit dem Eingang der Anode (10) gekoppelt ist, um der wenigstens einen Brennstoffzelle (4) Wasserstoff zuzuführen, eine Anodenabgasleitung (8), die mit dem Ausgang der Anode (10) gekoppelt ist, um Abgase von der wenigstens einen Brennstoffzelle (4) abzuführen, und einen Wasserabscheider (20), der in der Anodenabgasleitung (8) angeordnet ist Der Wasserabscheider (20) und die Anodenabgasleitung (8) sind in einem ersten thermischen Bereich (T1) angeordnet, und die Wasserstoffzuleitung (6) ist in einem zweiten thermischen Bereich (T2) angeordnet, wobei die Temperaturen des ersten thermischen Bereiches (T1) und des zweiten thermischen Bereiches (T2) unabhängig voneinander einstellbar sind.
Resumen de: DE102025109738A1
Die vorliegende Erfindung bezieht sich auf ein sulfoniertes Polyphenyl (phenylen) äther-Randomcopolymer, sein Herstellungsverfahren und seine Anwendung, der chemische allgemeine Formel des sulfonierten Polyphenyl(phenylen)äther-Randomcopolymers ist wie nachfolgend:wobei drei Polyphenylringmonomer X, Y und Z in Randomcopolymerisationsweise verwendet sind, um die Position der Sulfonierung zu konrollieren. Die Segmente X und Y können sulfoniert werden, um hydrophile Segmente mit einer Wiederholungszahl n zu erhalten, während es unmöglich ist, die Substituente R4und R5in den Segmenten Z zu sulfonieren, sodass hydrophobe Segmente mit einer Wiederholungszahl 1-n gebildet werden. Durch die Kontolle des Polymerisationsäquivalenzverhältnisses der Segmente Z in dem Polyphenylringmonomer ist eine Feinjustierung des Verhältnisses von den hydrophilen Segmenten zu den hydrophoben Segmenten erreicht , und dadurch ist weiter die Ionenaustauschkapazität des sulfonierten Copolymers wirkungsvoll kontrolliert. Durch eine genaue Feinjustierung des Verhältnisses von den hydrophilen Segmenten zu den hydrophoben Segmenten kann die Ionenaustauschkapazität der in jedem Batch produzierten Copolymer innerhalb eines Bereich von einem bestimmten Wert kontrolliert werden. Das erfindungsgemäße Copolymer weist eine gute mechanische Eigenschaften, eine optimale Stabilität der Größe des Membrans, eine gute Protonenleitfähigkeit und eine kontrollierbare Ionenaustauschkapazität auf.
Resumen de: DE102024107319A1
Die hier offenbarte Technologie betrifft erfindungsgemäß ein Verfahren zum Regeln eines Anodendrucks in einem Brennstoffzellensystem (10), wobei das Brennstoffzellensystem (10) eine Brennstoffzelle (11) mit einer Anode (12) und einer Kathode (13), einen Drucksensor (21, 22) und einen Brennstoffsensor (24, 25) umfasst und das Verfahren die folgenden Schritte aufweist: Ermitteln eines Anodendrucks mittels des Drucksensors (21, 22), Ermitteln einer Brennstoffkonzentration in und/oder an der Anode (12) mittels des Brennstoffsensors (24, 25) und Regeln des Anodendrucks basierend auf der ermittelten Brennstoffkonzentration. Die Technologie betrifft ferner ein Brennstoffzellensystem (10), ein Fahrzeug (100) und ein Computerprogrammprodukt (30) zum Durchführen des Verfahrens sowie ein computerlesbares Speichermedium (40), auf welchem das Computerprogrammprodukt (30) gespeichert ist.
Resumen de: CN119856011A
Heat is transferred at a first heat exchanger (11) from a first portion of the liquid hydrogen to the heat transfer fluid stream by heat exchange with the heat transfer fluid to produce a vaporized hydrogen stream and a warmed heat transfer fluid stream. The vaporized hydrogen stream is combined with a second portion of liquid hydrogen in an amount designed to produce a combined stream having a desired temperature for filling one or more buffer vessels (19). Heat is also transferred at the second heat exchanger from the pressurized hydrogen stream from the at least one buffer vessel (19) to the cooled heat transfer fluid stream to produce a cooled pressurized hydrogen stream for filling a gas tank of the fuel cell electric vehicle.
Resumen de: EP4618205A1
The present invention provides a redox flow battery system including: a main cell that performs charge and discharge through supply of a positive electrolyte and a negative electrolyte; a plurality of monitor cells selected from the group consisting of a bipolar monitor cell, a positive monitor cell, and a negative monitor cell; and a controller that controls charge and discharge of the main cell. The controller issues an operation command to an alarm device when a specific condition is satisfied.
Resumen de: MX2025002834A
The present invention relates to an apparatus for the connection and supply of a plurality of modules (2) for producing electrical energy and provided with at least one stack of fuel cells (3).
Resumen de: WO2025187346A1
A marine plant system according to an aspect of the present disclosure comprises: a seawater treatment device (10) that separates seawater into fresh water and concentrated seawater; an electrolysis device (20) that electrolyzes the concentrated seawater separated by the seawater treatment device (10); an intermediate raw material production device (30) that uses the fresh water separated by the seawater treatment device (10) and hydrogen gas, chlorine gas, and sodium hydroxide generated by the electrolysis device (20) to produce calcium chloride and sodium hydrogen carbonate from calcium carbonate; and a calcium alginate production device (40) that uses the calcium chloride and sodium hydrogen carbonate produced by the intermediate raw material production device (30) to extract alginic acid from seaweed collected from the sea and produce calcium alginate.
Resumen de: JP2025134465A
【課題】 セルスタックの故障を適切に検知する。【解決手段】 セルスタックモジュールは、電解単セル10を複数含むセルスタック1と冷却器43と水分検出器44を備える。セルスタック内に供給される供給ガスは、燃料室に供給され、燃料ガスと特定ガスを含む第1供給ガスと空気室に供給される第2供給ガスを含む。燃料ガスの電気分解により水素が生成されるという条件及び特定ガスが水素を含むという条件の少なくとも一方と、燃料ガスの電気分解により酸素が生成されるという条件及び第2供給ガスが酸素を含むという条件の少なくとも一方が成立しているという条件である水蒸気生成条件と、燃料ガスが水蒸気を含むという水蒸気含有条件の少なくとも一方が成立している。冷却器は燃料室と空気室のうち正常運転時には水蒸気が排出されない対象室の下流側に配置されており、水分検出器は冷却器の内部又は下流側に配置されている。【選択図】 図1
Resumen de: JP2025134423A
【課題】水素ボイルオフガスの大気への排出を抑制する。【解決手段】供給システムは、液体水素を貯蔵する容器で気化した水素ボイルオフガスで発電する燃料電池と、燃料電池が発電した電力を蓄えるバッテリ2と、容器の液体水素を用いて動力を発生する燃料電池が、所定時間以上停止する停止期間中に発生する水素ボイルオフガスの発生量を予測する発生量予測部822と、発生量の水素ボイルオフガスで燃料電池が発電できる発電量を予測する発電量予測部823と、予測された発電量の電力がバッテリに充電可能な電力量よりも大きい場合、停止期間になる前にバッテリ2の残容量を減らす容量制御部824と、停止期間中に発生した水素ボイルオフガスを燃料電池に供給することにより、燃料電池に水素ボイルオフガスで発電させる供給制御部825と、を有する。【選択図】図2
Nº publicación: JP2025134700A 17/09/2025
Solicitante:
ニンバス・パワー・システムズ・インコーポレイテッド
Resumen de: JP2025026850A
To provide a bipolar plate that provides improved delivery of humidified reactants and better removal of produced water.SOLUTION: A bipolar plate 100 for a fuel cell includes a non-porous subplate 102 and a porous subplate 104. The non-porous subplate 102 includes a water management surface 122, a reactant surface on the opposite side, and an internal coolant passage between the two surfaces. The porous subplate 104 includes a reactant surface and a water management surface on the opposite side. The reactant surface includes a first reactant flow field. The water management surface is fluidically connected to the water management surface of the non-porous subplate.SELECTED DRAWING: Figure 3