Resumen de: WO2025040493A1
The invention relates to a metal substrate (10-1, 10-2) for use as an electrode (206-1, 206-2) in an electrolytic cell (200), wherein: the substrate (10-1, 10-2) extends in a planar manner in a substrate plane; the substrate plane is spanned by a substrate longitudinal direction (12) and substrate transverse direction (14); the substrate (10-1, 10-2) has a front face (18) and an opposite rear face (20) and has a thickness in a thickness direction orthogonal to the substrate plane; in the substrate (10-1, 10-2) a plurality of through channels (26) are formed which are each delimited by a wall of the substrate (10-1, 10-2); the wall delimiting a respective through channel (26) has upper wall portions which delimit the through channel (26) towards the top; and at least some of the upper wall portions are inclined upwards at an angle in the direction towards the rear face in a respective guide region. The invention also relates to an electrolytic cell (200) comprising such a substrate (10-1, 10-2).
Resumen de: WO2025042447A1
A method for producing an olefin product, including the steps of converting a hydrocarbon feedstock to an unsaturated hydrocarbon stream through a steam cracking process in an olefins production plant; combusting hydrogen to provide at least some of the heating duty to the steam cracking process, wherein the hydrogen has a carbon intensity less than about 1.0 kg CO2e / kg H2, wherein the hydrogen is produced using a hydrogen production process; providing at least some of the required energy for the hydrogen production process from a biomass power plant; and processing the unsaturated hydrocarbon stream to recover the olefin product. The olefin product may comprise ethylene having a well-to-gate carbon intensity less than about 0.6 kg CO2e / kg C2H4, or may comprise propylene having a well-to-gate carbon intensity less than about 0.6 kg COCO2e / kg C3H6.
Resumen de: WO2025037484A1
Provided are a hydrogen gas production system and a hydrogen gas production method, with which it is possible to produce a high-purity hydrogen gas at a low cost by recovering a high-purity hydrogen gas at a high recovery rate without using a large-scale device. A hydrogen gas production system 100 according to the present invention comprises: a degassing device 20 that degasses raw water; an electrolysis device 30 that generates a hydrogen gas by electrolyzing the raw water degassed by the degassing device 20; piping 62 that connects the degassing device 20 and the electrolysis device 30 and that partitions a flow path through which the raw water is fed from the degassing device 20 to the electrolysis device 30; and a first oxygen gas supply device 40 that supplies an oxygen gas as a degassing gas to the degassing device 20.
Resumen de: WO2025043182A1
A geothermally powered hydrogen production system includes a wellbore that heats a heat transfer fluid, thereby forming heated heat transfer fluid. A heat exchanger heats a feed stream using the heated heat transfer fluid, thereby forming a heated feed stream. An electrolyzer receives the heated feed stream and generates hydrogen from the heated feed stream.
Resumen de: WO2025042413A1
A method of running a water electrolyzer that can operate on seawater without a significant voltage rise. In some embodiments, the method includes the use of specific ionomers in the catalyst layer. In some embodiments, the method involves using a Break-In Procedure. In some embodiments, the method can include periodic interruption of the voltage to the AEM electrolyzer.
Resumen de: WO2025041743A1
The purpose of the present invention is to provide a technology for efficiently generating hydrogen with a minute voltage. In this invention, two substrates having conductivity are electrically connected and arranged such that the conductive surfaces of the respective substrates face each other. At least one of the substrates is transparent and is a light incident side substrate. A silicon dioxide particle molded body which is treated with a hydrohalic acid is arranged between the two substrates. A semiconductor layer is arranged on the light incident side substrate, and the two substrates having conductivity and the silicon dioxide particle molded body are immersed in an electrolyte. Hydrogen can be efficiently generated by setting the particle diameter of the silicon dioxide particles to about 0.2 mm or less and bonding, with the semiconductor layer arranged on the light incident side substrate, a sensitizing dye having a hydrophilic group in part of a molecular skeleton not contributing to bonding with the semiconductor layer.
Resumen de: WO2025041428A1
Provided is a water electrolysis system that alters power consumption by sensing a system frequency to rapidly change power consumption, wherein a suitable adjustment margin that can be accommodated instantaneously by an electrolytic cell is calculated so as to suppress deterioration or failure of the electrolytic cell. This water electrolysis system is configured by including: a rectifier that converts alternating-current power of a power system to direct-current power; an electrolysis tank that performs water electrolysis using the direct-current power from the rectifier; a gas-liquid separator that performs gas-liquid separation of oxygen and hydrogen from a fluid that is a mixture of oxygen and water from the electrolytic cell; and a cooling system that supplies water to the electrolytic cell. The water electrolysis system is characterized in that: the rectifier is controlled so as to adjust power consumption in accordance with the frequency of the power system; the power consumption is adjusted so that the power consumption in the electrolytic cell is within a limited range for power consumption; and the limited range for power consumption is determined on the basis of the temperature and deterioration rate of the electrolytic cell, the pressure of water at an exit of the electrolytic cell, and the flow rate of the supplied water.
Resumen de: WO2025041021A1
The present invention relates generally to the production of a desalinated, filtrated or other way treated water simultaneously with generation of renewal energy source, in particular hydrogen, using osmotic and/or gauge pressure driven filtration processes and systems. The co-generation of hydrogen 11 from water 8 produced during pressure driven water desalination/filtration processes, such as reverse osmosis, forward osmosis, pressure retarded osmosis or ultrafiltration. A small part of feed, raw saline solution and/or permeate involved in a desalination/filtration processes is subjected to electrolysis thereby splitting the water to produce hydrogen. This is achieved by the provision of novel RO type semi- permeable membranes and UF type membrane that incorporate electrodes 9, 10 within the membrane to allow splitting of the water via electrolysis.
Resumen de: WO2025039409A1
The present invention belongs to the field of functional materials. Provided is a method for preparing a zinc-doped cobalt selenide catalyst. The method for preparing a zinc-doped cobalt selenide catalyst comprises: adding a selenium powder to a potassium hydroxide solution, stirring same until the selenium powder is dissolved, then adding deionized water, cobalt nitrate, zinc nitrate and ethylenediaminetetraacetic acid disodium salt to the resulting solution, continuing stirring, putting the finally obtained solution into a polytetrafluoroethylene reaction kettle for a hydrothermal reaction, and after the reaction is finished, cooling the resulting reaction product to room temperature and then washing, drying and grinding same, so as to obtain a zinc-doped cobalt selenide catalyst. In the method for preparing a zinc-doped cobalt selenide catalyst provided by the present invention, during the preparation process, the raw materials are readily available, the reaction conditions are mild, and a zinc-doped cobalt selenide catalyst can be obtained at a relatively low temperature, all of which are beneficial for reducing the production cost. The zinc-doped cobalt selenide catalyst prepared in the present invention has a unique rod-like structure and good electro-catalytic performance, and the obtained electrocatalyst is non-toxic and harmless, and has wide application prospects.
Resumen de: DE102023122838A1
System (30) zur Gewinnung von getrocknetem Wasserstoff, mit einer Elektrolysevorrichtung (31) zur Gewinnung von Wasserstoff aus Wasser, mit einer Trocknungsvorrichtung (35) zur Trocknung eines in der Elektrolysevorrichtung (31) gewonnenen Wasserstoff-Wasser-Gemischs, wobei die Trocknungsvorrichtung eine erste Trocknungseinrichtung (36) zum Entfernen flüssigen Wassers aus dem in der Elektrolysevorrichtung (31) gewonnenen Wasserstoff-Wasser-Gemisch aufweist, wobei die Trocknungsvorrichtung (35) einen ersten Wärmetauscher (38) zum Abkühlen des in der ersten Trocknungseinrichtung (36) teilgetrockneten Wasserstoff-Wasser-Gemischs unter Auskondensieren dampfförmigen Wassers aufweist, wobei die Trocknungsvorrichtung eine zweite Trocknungseinrichtung (42) zum Entfernen des auskondensierten Wassers aus dem abgekühlten Wasserstoff-Wasser-Gemisch aufweist, mit einem zweiten Wärmetauscher (40) zum weiteren Abkühlen des in dem ersten Wärmetauscher (38) abkühlten Wasserstoff-Wasser-Gemischs unter weiterem Auskondensieren dampfförmigen Wassers, wobei der erste Wärmetauscher (38) eingerichtet ist, zur Kühlung des die erste Trocknungseinrichtung (36) verlassenden Wasserstoff-Wasser-Gemischs das die zweite Trocknungseinrichtung (42) verlassende Wasserstoff-Wasser-Gemisch über den ersten Wärmetauscher zu führen, wobei der zweite Wärmetauscher (40) eingerichtet ist, zur Kühlung des den ersten Wärmetauscher (38) verlassenden Wasserstoff-Wasser-Gemischs ein Kühlmittel über den
Resumen de: DE102023122491A1
Eine elektrisch leitfähige Platte (3) eines Zellenstapels eines Elektrolyseurs zur Wasserstoffherstellung umfasst einen als 3D-Druck-Teil ausgebildeten metallischen Plattengrundkörper (4), welcher mindestens eine Nut (9) aufweist, in der sich eine als Spritzgusskomponente ausgebildete Dichtung (5) befindet.
Resumen de: DE102023122813A1
Die Erfindung betrifft ein metallisches Substrat (10) für den Einsatz als Elektrode (206-1) in einer Elektrolysezelle (200), wobei das Substrat in einer Substratebene flächig erstreckt ist, wobei die Substratebene durch eine Substratlängsrichtung (12) und eine Substratquerrichtung (14) aufgespannt ist, wobei das Substrat eine Vorderseite (18) und eine gegenüberliegende Rückseite (20) aufweist und eine Dicke in einer zu der Substratebene orthogonalen Dickenrichtung aufweist, wobei in dem Substrat eine Mehrzahl von Durchgangskanälen (26) ausgebildet sind, welche jeweils durch eine Wandung des Substrats begrenzt sind, wobei die einen jeweiligen Durchgangskanal begrenzende Wandung obere Wandungsabschnitte aufweist, welche den Durchgangskanal nach oben begrenzen, wobei zumindest eine Teilmenge der oberen Wandungsabschnitte in einem jeweiligen Führungsbereich in Richtung zur Rückseite hin schräg nach oben geneigt ist. Die Erfindung betrifft auch eine Elektrolysezelle (200) umfassend ein solches Substrat (10).
Resumen de: AR131252A2
En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.
Resumen de: EP4512930A1
Disclosed are a microbial electrolysis cell suppressing methane generation and a method of producing hydrogen using the same, and more particularly microbial electrolysis cell technology, which prevents the growth of methanogens inside a reactor during operation of a microbial electrolysis cell by aerating a substrate for use in a microbial electrolysis cell with acetylene gas before supply of the substrate, thereby suppressing consumption of the hydrogen and substrate by methanogens, ultimately increasing the hydrogen yield and lifespan of the microbial electrolysis cell.
Resumen de: AR131251A2
En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.
Resumen de: CN119234030A
A process for producing a synthesis gas having an H2/CO ratio of 0.5 to 3.5 comprising: a) combusting hydrogen and oxygen in an H2 burner in the presence of steam to produce steam, b) quenching the effluent of step a); c) electrolyzing the steam of step b) in a solid oxide electrolysis cell (SOEC), thereby obtaining hydrogen and oxygen, d) cooling the wet hydrogen of step c) and removing moisture by condensation; e) performing a reverse water-gas shift reaction on the hydrogen in the step d) and CO2 from an external source to obtain synthesis gas; f) cooling the wet synthesis gas of step e) and removing moisture by condensation, thereby obtaining a dry synthesis gas.
Resumen de: AU2023300508A1
The main objective of the present invention is to provide an electrolyte membrane having good bondability with a catalyst layer, said electrolyte membrane comprising a polymer electrolyte-containing layer (A) and a layer (B) disposed on at least one surface of the layer (A), wherein the layer (B) has a higher porosity (X1) in an interface region thereof with the layer (A) than the porosity (X2) of the layer (B) in an interface region on the opposite side from the layer (A).
Resumen de: AU2023297106A1
An electrolyte membrane is provided comprising a recombination catalyst layer. The membrane has a thickness of less than or equal to 100 µm and is a single coherent polymer film comprising a plurality of ion conducting polymer layers. The recombination catalyst layer comprises particles of an unsupported recombination catalyst dispersed in an ion conducting polymer and the layer has a thickness in the range of and including 5 to 30 μm. Catalyst coated membranes (CCMs) incorporating the electrolyte membranes are also provided, together with methods of manufacturing the electrolyte membranes.
Resumen de: WO2024002797A1
The invention relates to a system combination (100), comprising: at least two electrolysis systems (1A, 1B); a power supply source (3) having a direct voltage output (7); and a central supply line (5); wherein the central supply line (5) is connected to the direct voltage output (7) of the power supply source (3), so that a direct current can be fed into the central supply line (5) and a central DC network designed for a high voltage is provided, to which DC network the electrolysis systems (1A, 1B) are connected by means of the central supply line (5). The power supply source (3) has, as a power generator, a wind turbine (19), to which a rectifier (13A) having a direct voltage output (7) is connected, the direct voltage output (7) being designed for the high voltage. At least one of the electrolysis systems (1A, 1B) is disposed at the base of the tower of the wind turbine (19) and is connected there directly to the central supply line (5). The invention also relates to a of a DC network in a system combination of this type, wherein a number of electrolysis systems (1A, 1B) is connected to a central supply line (5) for direct current, and wherein a direct current is fed, at a specified high voltage, into the central supply line (5) by means of a direct voltage output (7).
Resumen de: AU2023218595A1
There is provided a method and apparatus for producing hydrogen gas from biogenic material (210) within a pressure vessel (10). The method comprises heating a granular material (15) to greater than 500°C, adding a batch of biogenic material (210) into the pressure vessel with the heated granular material (15) at atmospheric pressure, closing the pressure vessel, and mixing the heated granular material (15) with the biogenic material (210) inside the closed pressure vessel (10) to raise the temperature of the biogenic material (210) and commence gasification, the gasification producing gas that increases the pressure inside the pressure vessel (10), the produced gas comprising hydrogen gas.
Resumen de: EP4467182A2
Ingestible devices capable of delivering a dispensable substance, such as, for example, a therapeutic agent, as well as related components, systems and methods, are disclosed. A removably attachable storage reservoir configured to be used with an ingestible device and capable of storing dispensable substance, such as, for example, a therapeutic agent, as well as related components, systems and methods, are also disclosed.
Resumen de: EP4512931A1
Es wird ein Verfahren (100, 200, 300, 400, 500) zur Herstellung von Wasserstoff (H) vorgeschlagen, bei dem ein kohlenwasserstoffhaltiger Einsatz (G) unter Erhalt eines ersten Anteils des Wasserstoffs (H) und Erhalt von Kohlenstoff (C) einer Pyrolyse (10) unterworfen wird. Hierbei ist vorgesehen, dass Dampf (S) unter Erhalt eines zweiten Anteils des Wasserstoffs (H) und unter Erhalt von Sauerstoff (O) einer Hochtemperaturelektrolyse (20, 40) unterworfen wird, wobei zumindest ein Teil des Dampfs (S) durch Abwärme der Pyrolyse (10) erzeugt wird. Eine entsprechende Anlage ist ebenfalls Gegenstand der vorliegenden Erfindung.
Resumen de: WO2023205126A1
The systems and methods described herein provide for control of hydrogen generation based on one or more characteristics of an input power signals, including a voltage of the input power signal and/or a frequency of the input power signal. The hydrogen generation system may be controlled in response to a reactive power consumption of the hydrogen generation system and/or a reactive power component of a power grid providing energy to the hydrogen generation system. In one embodiment, the hydrogen generation system may be controlled to generate reactive power in circumstances in which a voltage an input power signal is less than or more than a voltage range. In another embodiment, the hydrogen generation system may control hydrogen production based on a frequency of the input power signal.
Resumen de: EP4512932A1
A hydrogen production system and a hydrogen production method includes: a heat exchanger that heats steam by using a heating medium heated by thermal energy at 600°C or higher; a high-temperature steam electrolysis device that electrolyzes steam at 600°C or higher to produce hydrogen by applying, to a high-temperature steam electrolysis cell, a voltage lower than an electric potential at a thermal neutral point at which Joule heating caused by application of a current and heat absorption caused by electrolysis reaction are balanced; and a heating device that heats the high-temperature steam electrolysis device by the steam.
Nº publicación: EP4511893A1 26/02/2025
Solicitante:
OHMIUM INT INC [US]
Ohmium International, Inc
Resumen de: WO2023205154A1
A system and method of power management for a power generation system is disclosed. A method of power management for a hydrogen generation system including one or more electrochemical stacks, the one or more electrochemical stacks receiving power from an electrical grid including at least one power source, includes: receiving a frequency or voltage reference value for the hydrogen generation system; continually monitoring a frequency or voltage of the electrical grid; and varying a load of the hydrogen generation system in response to the frequency or voltage of the electrical grid differing from the frequency or voltage reference value to restore the frequency or voltage of the electrical grid to the frequency or voltage reference value.