Resumen de: CN120483262A
本发明公开乙醇调控层状金属氧化物及其制备方法和在甲烷催化裂解制备单壁碳纳米管中的应用,将碱液和含有Fe、Mo、Mg和Al的可溶性金属盐滴加到碱性的乙醇水溶液中,形成沉淀,经老化、干燥和煅烧后,得到乙醇调控Fe‑Mo/MgAl‑LDOs催化剂,将这一催化剂应用到甲烷催化裂解制备单壁碳纳米管。本发明的技术方案有效提高了层状金属氧化物中活性组分的分散度,具有更大的比表面积和孔径,但孔体积有所减小,有效避免了SWCNTs在生长过程中因“碰壁”而停止生长。
Resumen de: CN120483112A
本发明提供一种高光热红光碳量子材料及其制备方法和应用,涉及生物功能纳米材料领域。所述制备方法,包括以下步骤:将邻苯二胺、盐酸多巴胺和氯金酸溶于溶剂,得溶液A;在溶液A中加入酸和氧化剂,搅拌,进行水热反应,冷却后得溶液B;将溶液B洗涤、离心,取上清液得溶液C;将溶液C纯化、干燥即得。本发明的制备方法合成条件简易,有利于工业生产。且量子产率高、荧光强度高,有良好的光热效应和灵敏的脲酶响应性。
Resumen de: WO2025167529A1
The present application relates to the technical field of negative electrode materials of batteries, and in particular relates to a porous composite elastomer and silicon-carbon, and preparation methods therefor and the use thereof. The present application provides a porous composite elastomer, which is of a porous structure, and comprises a flexible body and a rigid body, which are interpenetrating, wherein the raw material of the flexible body comprises carbon nanotubes, and the rigid body comprises hard carbon. In the present application, a silicon-carbon composite material is prepared by using carbon nanotubes and hard carbon as carbon sources and compounding same with silicon; and compared with a conventional silicon-carbon composite material, the carbon nanotubes, serving as a bridge between the silicon and the hard carbon, can effectively improve the conductivity and the ion conducting energy, thereby improving the rate capability of a negative electrode material.
Resumen de: US2025259676A1
A complex nanostructure, which includes a first nanostructure component having at least one aperture in a side thereof; at least one second nanostructure component having a first end and a second end, wherein the first end of each of the at least one second nanostructure is inserted through a corresponding one of the at least one aperture in the first nanostructure, thereby forming at least one junction. Embodiments of the complex nanostructure include a bifurcated nanostructure transistor constructed of linear carbon nanotubes, a multiplexer constructed of a circular carbon nanotube and multiple linear carbon nanotubes, and an information unfolder constructed of linear or a combination of linear and circular carbon nanotubes. The nanotubes may optionally be decorated with genetic material such as single-strand or double-strand human DNA segments and/or may be modified by e-beam or ozone gas to add defects into the nanotubes to alter electrical/functional characteristics.
Resumen de: WO2024109728A1
The invention relates to a conductive agent, an electrode for a lithium battery, and a method for preparing the conductive agent. The conductive agent comprises a mixture of dried, preferably freeze-dried carbon nanostructures and carbon black.
Resumen de: US2025256969A1
A carbon nanotube dispersion composition includes carbon nanotubes (A), a dispersant (B), and a solvent (C). A particle diameter D50 at a cumulative volume of 50% according to laser diffraction particle size distribution measurement is 0.3 to 7 μm, and (1) and (2) below are satisfied. (1) The dispersant (B) is a polymer that has a weight average molecular weight of 5,000 or more and 360,000 or less and includes a carboxyl group-containing structural unit derived from at least one of (meth)acrylic acid and (meth)acrylate having a carboxyl group. (2) When the particle diameter D50 at a cumulative volume of 50% according to laser diffraction particle size distribution measurement of the carbon nanotube dispersion composition is X μm, and a pH is Y, X and Y satisfy (Formula a) and (Formula b) below:Y≥-0.149X+4.545(Formulaa)Y≤-0.134X+5.140.(Formulab)
Resumen de: US2025256968A1
The present invention generally relates to a method for producing high-quality carbon nanotubes (CNTs) from readily available and cost-effective egg-derived precursors. The system comprises a precursor preparation unit capable of processing egg white and/or yolk into suitable forms for pyrolysis. This unit includes options for dehydration and grinding into powder, hydrothermal treatment for solution-based precursors, and a blender for combining egg white and yolk powders in a controlled ratio to tailor the nitrogen/carbon content of the resulting CNTs. A pyrolysis reactor subjects the precursor to catalytic pyrolysis in an inert atmosphere (e.g., Argon) at temperatures between 900° C. and 1000° C., utilizing an iron (Fe) catalyst. Downstream, a purification unit removes catalyst particles and by-products. A gas flow control system maintains the inert atmosphere within the reactor, ensuring consistent CNT formation. This system offers a sustainable and scalable approach to CNT synthesis, leveraging the unique properties of egg components.
Resumen de: US2025256963A1
A method of synthesizing a hydroxyapatite (HAp) product from eggshells, including reacting eggshells with an inorganic base in a polar solvent to decarbonize the eggshells and form a calcium hydroxide material and a sodium carbonate material and mixing the calcium hydroxide material, in a polar solvent at a pH of greater than 10, with a phosphate salt to form a mixture including the hydroxyapatite product. A ratio of the calcium hydroxide material to the phosphate salt is from 1:1 to 5:1. The method further includes microwave irradiating the mixture for 1 to 10 minutes (min) at a temperature from 80 to 120 degrees Celsius (° C.), filtering the mixture to collect the hydroxyapatite product, and further drying the hydroxyapatite product.
Resumen de: US2025256270A1
A method for producing a metal nanowire catalyst includes a supporting step of supporting metal nanowires on carbon supports and a washing step of removing impurities from supports obtained by supporting the metal nanowires on the carbon supports. The washing step includes a first mixing step of bringing a solution containing a hydride reducing agent into contact with the supports and a first separation step of removing first impurities separated from the supports, from a first mixture obtained in the first mixing step.
Resumen de: MX2025004087A
Provided herein are compositions and methods for the coating of nanoparticulates. More specifically, the present invention relates to a coated carbonate, a process for the preparation of such, and its use as an additive in the production of composite.
Resumen de: CN120463186A
本发明公开了用生物质废弃物制备高度石墨化碳纳米材料的方法及应用,属于材料科学和纳米技术领域,将经过前处理的生物质废弃物和高浓度强酸溶液混合,搅拌后终止反应,得到反应液,将反应液用去离子水离心洗涤,收集白色的悬浮液,透析,浓缩,用去离子水调整至纤维素纳米晶(CNC)的质量分数为8.5wt%,再加入纳米铜基金属有机框架得到CNC悬浮液,将CNC悬浮液按照0.076‑0.153g/cm2的添加量铺展于聚四氟乙烯模具中,烘干得到CNC膜,将CNC膜平放于瓷方舟中,在惰性气体氛围和高温处理下得到预碳化CNC膜,再用焦耳加热装置处理,制备的碳纳米材料具备高结晶度、高导电性和高度石墨化的特性。
Resumen de: CN120464390A
本发明属于对硝基苯酚的荧光分析检测方法,具体涉及检测对硝基苯酚的荧光碳量子点探针及其制备方法和应用。荧光碳量子点探针的具体制备方法如下:以氨基嘧啶为前驱体,将氨基嘧啶和水混合后,置于160℃~200℃下反应,获得表面富含羟基、氨基和羧基基团的荧光碳量子点探针。本发明制备的荧光碳量子点探针具有强荧光信号,选择性地响应对硝基苯酚,并展示较宽的线性检测范围以及高的抗干扰能力,适合复杂环境污染物检测。
Resumen de: CN120473746A
一种氧化石墨烯包锡复合材料及其制备方法,该复合材料的制备原料包括:氧化石墨烯和锡粉,其中所述的氧化石墨烯与锡粉的质量比例为(10~30):1,所述的氧化石墨烯与锡粉通过喷雾干燥和高温煅烧相互结合;本申请的技术方案通过将低电导率的锡粉与高介电常数的氧化石墨烯复合,以提高吸波材料的阻抗匹配性能和对电磁波的衰减性能的氧化石墨烯包锡复合材料。
Resumen de: CN120473491A
本发明提供了一种复合负极材料,用于制作负极片,为大颗粒硬碳与小颗粒碳材料混合颗粒,所述小颗粒碳材料占混合材料质量的5‑20%,小颗粒碳材料的粒径分布特征参数D50是大颗粒硬碳D50的0.1‑0.8倍。本发明还提供了一种负极片,由上述的复合负极材料制备而成。本发明还提供了一种钠离子电池,包含上述的负极片。本发明采用大颗粒与小颗粒掺混的方式,小颗粒由于更短的离子传输路径,充放电过程中极化更小,倍率充电及低温充电时保持率更高,温升更小;小颗粒可填充大颗粒堆积缝隙,从而提高压实密度,进而提高能量密度。
Resumen de: CN120459326A
本发明涉及用于毛发生长调控的外用组合物及其制备方法,属于化妆品及医药技术领域。本发明的组合物包含有用于增强渗透的纳米介孔碳,纳米介孔碳上的多种表面功能修饰,还有米诺地尔、蛋白质片段、多肽、寡肽、氨基酸、度他雄胺、比马前列素、中药提取物、维生素、咖啡因、核苷、生长因子以及多种辅助功能性成分。其中,用于增强渗透的纳米介孔碳中介孔孔径为2~30 nm,介孔总孔体积为1.5~3.5cm3/g,纳米介孔碳颗粒尺寸50~200 nm。本发明制备的纳米介孔碳为颗粒状,尺寸可控,结构稳定,对皮肤没有刺激性,对组合物中的各种活性成分保持惰性,但可增强其它成分在皮肤上的吸收和渗透,适用范围广,可以复合各种类型的活性成分,生物安全性高。
Resumen de: CN120475694A
本申请公开了一种石墨烯/碳纳米管复合频率选择薄膜及其制备方法和应用,具体涉及电磁防护材料的领域。将碳纳米管材料、表面活性剂、粘结剂及溶剂进行混合,得到碳纳米管浆料;利用碳纳米管浆料制备碳纳米管薄膜;在碳纳米管薄膜表面沉积生长石墨烯薄膜,得到石墨烯/碳纳米管复合薄膜;在石墨烯/碳纳米管复合薄膜上刻蚀图案,得到复合频率选择薄膜。将碳纳米管组合成相互搭接的三维骨架结构,为电子传输提供初始网络通道,并通过化学气相沉积工艺将石墨烯包覆于碳纳米管表面,进一步增强碳纳米管搭接位点处的电子传输能力,提高复合频率选择薄膜的导电性。
Resumen de: CN120463185A
本发明公开了种造纸黑液同步制备碳量子点和木质素的方法,包括,以造纸制浆工艺中产生的废弃物黑液为原料,在温和条件下添加硫酸析出木质素,上清液经透析、干燥即可获得碳量子点;本发明所制备的碳量子点具有较好的理化性质,在光催化等领域有较大应用潜力;本发明提出的造纸黑液同步制备碳量子点和木质素方法绿色环保,制备条件温和,过程简便,成本低,碳量子点收率高。
Resumen de: CN120464897A
本发明公开了一种提高石墨烯/镁复材电磁屏蔽和导热性能的纳米碳‑铜异质界面构筑方法及基于其的复合材料,属于异质界面技术领域。该方法如下:将本征石墨烯、表面活性剂和发泡剂混合,在溶剂水中进行超声分散处理,并进行冷冻干燥得到本征石墨烯预制体;本征石墨烯预制体作为基底进行化学气相沉积,在其表面原位沉积纳米碳,得到本征石墨烯‑纳米碳预制体;将含铜氧化剂、还原剂添加至乙醇中超声处理得到乙醇溶液,将本征石墨烯‑纳米碳预制体加入到乙醇溶液中,进行静置和干燥处理,再进行热处理,得到本征石墨烯‑多维度纳米碳‑纳米铜预制体;在氩气保护下加热,将镁合金基体置于本征石墨烯‑多维度纳米碳‑纳米铜预制体上进行液固浸渗挤压,得到本征石墨烯增强镁基复合材料,用以解决现有三维网络结构的本征石墨烯无法兼具优异电磁屏蔽性能和导热性能以及现有镁基复合材料仅进行单一电磁屏蔽性能或导热性能调控的问题。
Resumen de: CN120473341A
本发明属于储能材料技术领域,尤其涉及一种含碳金属氧化物负极材料、其制备方法与锂离子电容器。与现有技术相比,本发明创新性地使用纳米结构的金属有机框架材料为前驱体,通过热处理形成纳米结构的金属氧化物材料作为锂离子电容器负极材料。其中通过强配位键连接的金属位和有机配体之间的限域效应能够有效减缓材料的体积膨胀效应,并且金属元素的潜在催化作用可以促进周围碳的石墨化程度,从而进一步增强负极电极的电子导电性和表面粗糙度,提升锂离子电容器的能量密度。
Resumen de: CN120463190A
本发明提供了一种菌丝石墨烯复合材料及其制备方法、应用。其中制备方法包括:S1将真菌液接种在界面生长培养基上,然后放置在恒温恒湿箱中培养,在培养24小时后,每隔8小时观察生长情况;其中界面生长培养基由上至下依次包括多孔亲水基底、吸水布、泡沫和液体培养基,吸水布包裹在泡沫上,漂浮在液体培养基上,多孔亲水基底贴覆在吸水布的表面;S2当菌丝复合体生长完毕后,将得到的菌丝复合体取出后清洗、干燥;S3将干燥后的菌丝复合体放置在高温炉中,以惰性气体的保护气氛下,加热到500‑1000℃,并保温2小时后自动降温。本发明利用界面生长培养基培养真菌液,提高菌丝的生长速度,同时高温碳化后可以得到菌丝石墨烯复合材料。
Resumen de: CN120459796A
本发明涉及一种海藻基碳量子点协同植物激素增强微藻固碳的方法,属于生物固碳技术领域。该方法以小球藻为固碳载体,在垂直管式光生物反应器中培养,并在初始阶段添加吲哚‑3‑乙酸(IAA)和海藻基碳量子点(U‑CQDs),优化培养条件(25~30℃,3000 Lux光照,15%CO2供应)。海藻基碳量子点(U‑CQDs)以条浒苔为原料,通过水热法制备,具有优异的光转换特性。本发明通过U‑CQDs与IAA的协同作用,显著提升微藻的光能利用效率、CO2固定速率及生物量积累,同时降低培养能耗。该方法操作简便,成本低,适用于工业烟气CO2的高效捕获与资源化利用。
Resumen de: CN120463170A
本发明提供一种共沉淀法磷酸锰铁锂正极材料制备方法,属于锂离子电池技术领域,包括致密内核制备、微流控设备实现Ni/Mg浓度渐变制备壳层、单向冷冻装置处理并煅烧,以及碳层涂覆并碳化。本发明内核(Mn/Ni富集)通过Ni掺杂选择性稳定Mn3+/Mn4+氧化还原对,在保持高电压(4.1V)的同时抑制Jahn‑Teller效应,避免传统LMFP材料中Mn3+导致的容量衰减快;外壳(Fe/Mg富集)通过Mg2+掺杂占据Li+位点形成“支柱效应”,抑制循环中晶格塌缩。本方案通过核壳组分渐变实现电压‑稳定性‑动力学三重优化。
Resumen de: CN120473554A
本发明涉及一种钠离子电池,属于钠离子电池。本发明的钠离子电池的电芯包括正极片、负极片和电解液;正极片的活性材料为碳包覆的铝掺杂硫酸铁钠;铝掺杂硫酸铁钠的化学式为Na2+2yFe2‑x‑yAlx(SO4)3,其中,0.01≤x≤0.05,0.1≤y≤1;碳包覆的铝掺杂硫酸铁钠的粒径为50nm‑100nm;碳包覆的铝掺杂硫酸铁钠中碳包覆层的重量占比为1%‑5%;负极片的活性材料为碳包覆的钛酸钠;碳包覆的钛酸钠的比表面积为20m2/g‑25m2/g;碳包覆的钛酸钠中碳包覆层的重量占比为0.5%‑3%。通过正负极材料的结构稳定性共同抑制体积膨胀,延长循环寿命。
Resumen de: CN120440974A
一种石墨烯基羰基铁粉掺杂纳米二氧化钛复合材料及其制备方法,该复合材料的原料包括:氧化石墨烯、羰基铁粉和纳米二氧化钛,其中氧化石墨烯与羰基铁粉的质量比为1:0.5‑1.5,羰基铁粉与纳米二氧化钛的摩尔比为1:(1~3);所述的氧化石墨烯、羰基铁粉和纳米二氧化钛通过喷雾干燥方法相互结合;本申请的方案具有改善石墨烯基材料的阻抗匹配性能,在具有较低填充率时就具有较高的反射损耗率和较宽的有效吸收带宽,有利于复合材料的加工并降低成本的优点。
Nº publicación: CN120438635A 08/08/2025
Solicitante:
南京大学江苏投特新能源有限公司
Resumen de: CN120438635A
本发明属于亚纳米颗粒的制备技术领域,尤其涉及一种亚纳米颗粒及其制备方法和应用。该方法包括以下步骤:将金属前驱体盐溶解在溶剂中,然后滴涂至基底上蒸干,得到前处理后基底;将前处理后基底在750‑1200℃下的还原气氛中进行煅烧,得到中间体;将中间体在液相环境下激光处理,得到亚纳米颗粒。本发明的方法得到的亚纳米颗粒粒径不超过2nm,较传统方法粒径大大降低。可以根据需求得到独立的微纳米颗粒或均匀担载在载体上的亚纳米颗粒。通过本发明的方法可实现亚纳米尺度下不同元素间的均匀混合,本不能热力学固溶的元素组合也能实现均匀混合,为新材料的开发扩宽了思路。