Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 396 resultados
LastUpdate Última actualización 23/08/2025 [07:02:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Resultados 75 a 100 de 396 nextPage  

MEMBRANE FOR ALKALINE WATER ELECTROLYSIS

NºPublicación:  EP4594552A1 06/08/2025
Solicitante: 
SOLVAY SPECIALTY POLYMERS USA [US]
Solvay Specialty Polymers USA, LLC
KR_20250077515_A

Resumen de: CN119948208A

Disclosed are a membrane suitable for alkaline water electrolysis and an alkaline water electrolysis device comprising the same. A method for producing hydrogen and a method for producing a membrane for alkaline water electrolysis are also disclosed.

HYDROGEN PRODUCTION FACILITY AND METHOD

NºPublicación:  EP4596757A1 06/08/2025
Solicitante: 
RELY S A [BE]
JOHN COCKERILL HYDROGEN BELGIUM SA [BE]
TECHNIP ENERGIES FRANCE [FR]
Rely S.A,
John Cockerill Hydrogen Belgium SA,
Technip Energies France
EP_4596757_PA

Resumen de: EP4596757A1

A hydrogen production facility is disclosed, comprising a plurality of electrolyser stacks arranged for electrolyzing water using an electrolyte and for generating at least a hydrogen-aqueous solution mixture; and a hydrogen separator arrangement for producing a flow of hydrogen from the hydrogen-aqueous solution mixture; wherein the hydrogen separator arrangement comprises a plurality of first stage hydrogen collector separators, the first stage hydrogen collector separators being fluidly coupled to a respective sub-set of the plurality of electrolyser stacks; and wherein the plurality of first stage hydrogen collector separators are fluidly coupled to a downstream hydrogen buffer vessel. A related method is further disclosed.

METHOD FOR PRODUCING TANTALUM NITRIDE MATERIAL, AND TANTALUM NITRIDE MATERIAL

NºPublicación:  EP4596493A1 06/08/2025
Solicitante: 
JX ADVANCED METALS CORP [JP]
UNIV SHINSHU [JP]
JX Advanced Metals Corporation,
Shinshu University
EP_4596493_PA

Resumen de: EP4596493A1

Provided is a method for producing a tantalum nitride material including a nitriding step of heating a precursor containing a lithium tantalum composite oxide in the presence of a nitrogen compound.

MULTIPLE FURNACE CARBON CAPTURE THROUGH FUEL GAS SEPARATION AND HYDROGEN COMBUSTION PRODUCT ELECTROLYSIS

NºPublicación:  EP4594249A2 06/08/2025
Solicitante: 
CHEVRON PHILLIPS CHEMICAL CO LP [US]
Chevron Phillips Chemical Company LP
WO_2024073537_A2

Resumen de: WO2024073537A2

A hydrogen-rich hydrocarbon fuel gas can be separated into a methane fuel stream and a hydrogen product stream. The methane fuel stream can be fed to a methane fuel fired furnace, combustion of the methane fuel stream can produce a carbon-dioxide-rich flue gas, and a carbon capture process can be performed on the carbon-dioxide-rich flue gas. The hydrogen product stream can be fed to a hydrogen fired furnace or elsewhere. Combustion of the hydrogen product stream in a hydrogen fired furnace can generate a flue gas the is low in carbon dioxide. Electrolysis of water obtained from the hydrogen fired furnace flue gas can produce hydrogen for a desired use, such as fuel for the hydrogen fired furnace, and can produce oxygen for enriching the fuel gas fed to the methane fuel fired furnace.

NºPublicación:  JP2025525301A 05/08/2025
Solicitante: 
ジョンソンマッセイハイドロジェンテクノロジーズリミテッド
JP_2025525301_PA

Resumen de: CN119317736A

An electrolyte membrane including a composite catalyst layer is provided. The membrane has a thickness of less than or equal to 100 mu m and is a single adhesive polymer membrane comprising a plurality of ion conducting polymer layers. The composite catalyst layer comprises particles of an unsupported composite catalyst dispersed in an ion conducting polymer, and the layer has a thickness in the range of from 5 mu m to 30 mu m and including 5 mu m and 30 mu m. Also provided are a catalyst coated film (CCM) incorporating the electrolyte membrane, and a method of manufacturing the electrolyte membrane.

用于形成电解槽的电池、包含这样的电池的电解槽、用于制造和操作电解槽的方法

NºPublicación:  CN120435589A 05/08/2025
Solicitante: 
新特有限公司
CN_120435589_PA

Resumen de: MX2025005140A

Cell for forming an electrolyser comprising at least one diaphragm or membrane having a first side and a second side opposite the first side, a first cell plate, arranged on the first side of the diaphragm, provided with a first electrode, provided with an inlet channel for supplying or draining electrolyte to or from the electrode, provided with a first discharge channel for discharging oxygen from the electrode, at least one second cell plate, arranged on the second side of the diaphragm, provided with a second electrode and provided with a second discharge channel for discharging hydrogen from the electrode wherein the at least one first and second cell plate are made of a polymer material.

Combined operation system and method for nuclear power generation and hydrogen production

NºPublicación:  KR20250117771A 05/08/2025
Solicitante: 
한국수력원자력주식회사
KR_20240127763_PA

Resumen de: KR20250117771A

원자력 발전 및 수소 생산을 위한 복합 운용 시스템 및 방법을 제공한다. 원자력 발전 및 수소 생산을 위한 복합 운용 시스템은 원자력 발전 및 수소 생산을 위한 복합 운용 시스템으로서, 제2 차 계통; 수전해를 수행하는 수전해부; 전력수요 변동량 정보를 제공받는 전력 그리드; 터빈 운전정보와 상기 수전해부의 운전정보를 제공하는 원자력 발전소 주제어부; 및 상기 전력수요 변동량 정보와 상기 운전정보를 기반으로, 원자력 발전과 수소 생산이 복합적으로 수행되도록 하기 위한 통합 운전제어부를 포함한다.

一种磷化钼碳纳米球负载铂作为析氢反应催化剂的制备方法

NºPublicación:  CN120425387A 05/08/2025
Solicitante: 
长虹三杰新能源有限公司长虹三杰新能源(苏州)有限公司
CN_120425387_PA

Resumen de: CN119465247A

The invention discloses a molybdenum phosphide carbon nanosphere loaded noble metal Pt as an efficient hydrogen evolution reaction catalyst and a preparation method thereof. The preparation method of the electrochemical catalyst comprises the following steps: firstly preparing a molybdenum phosphorus carbon nanosphere precursor by a hydrothermal method, then carrying out heat treatment in a hydrogen-argon mixed gas atmosphere, and finally loading noble metal platinum by a hydrothermal method to obtain the MoP/C-Pt catalyst. According to the MoP/C-Pt catalyst prepared through the method, molybdenum phosphide carbon nanospheres serve as a carrier, Pt nano-particle aggregation is obviously inhibited through the interaction between metal and the carrier, the problems that in the electrochemical hydrogen evolution reaction, the precious metal utilization rate of the catalyst is low, and stability is poor are effectively solved, in addition, MoP has special Mo delta + and P delta-active sites, and the stability of the catalyst is improved. According to the present invention, the carbon carrier is introduced, such that the water decomposition can be catalyzed under the low potential, the conductivity of the catalyst is enhanced due to the introduction of the carbon carrier, and the catalyst can provide the excellent electro-catalysis performance especially in the acidic and alkaline electrolyte. The preparation method is simple and can be widely applied to industrial production.

水素製造用シリコン微細粒子

NºPublicación:  JP2025114650A 05/08/2025
Solicitante: 
日新化成株式会社
JP_2025114650_PA

Resumen de: US2024059557A1

An exemplary hydrogen production apparatus 100 according to the present invention includes a grinding unit 10 configured to grind a silicon chip or a silicon grinding scrap 1 to form silicon fine particles 2, and a hydrogen generator 70 configured to generate hydrogen by causing the silicon fine particles 2 to contact with as well as disperse in, or to contact with or dispersed in water or an aqueous solution. The hydrogen production apparatus 100 can achieve reliable production of a practically adequate amount of hydrogen from a start material of silicon chips or silicon grinding scraps that are ordinarily regarded as waste. The hydrogen production apparatus thus effectively utilizes the silicon chips or the silicon grinding scraps so as to contribute to environmental protection as well as to significant reduction in cost for production of hydrogen that is utilized as an energy source in the next generation.

用于从空气中捕获二氧化碳并将二氧化碳直接转换成燃料和化学品的工艺

NºPublicación:  CN120393654A 01/08/2025
Solicitante: 
英飞纳姆科技有限责任公司
CN_120393654_PA

Resumen de: US2023373882A1

The invention relates to a process, catalysts, materials for conversion of renewable electricity, air, and water to low or zero carbon fuels and chemicals by the direct capture of carbon dioxide from the atmosphere and the conversion of the carbon dioxide to fuels and chemicals using hydrogen produced by the electrolysis of water.

一种水氧化催化剂及其制备方法和应用

NºPublicación:  CN120400901A 01/08/2025
Solicitante: 
西湖大学
CN_120400901_PA

Resumen de: CN118086964A

The invention belongs to the technical field of water electrolysis hydrogen production, and particularly relates to a water oxidation catalyst and a preparation method and application thereof. According to the method, a weak acid heterogeneous soaking system is manufactured through the hydrolysis effect of metal cations in a hydrolyzable metal salt solution, a slow action is conducted on the surface of the metal substrate, and the surface of the metal substrate can be partially etched while metal oxides on the surface are removed; the etched metal ions and the hydrolyzed metal ions are combined on the surface of the substrate to form an LDH catalyst structure, so that relatively high catalytic activity of the LDH catalyst structure is ensured; meanwhile, under the interface confinement effect, a compact transition layer structure is slowly formed on the interface of the metal substrate and the catalyst layer. The transition layer is used as a bridge between the metal substrate and the catalyst layer, has the same structure as LDH, is more compact in morphology, and completely covers the surface of the metal substrate, so that the LDH catalytic structure layer is firmly anchored on the surface of the metal substrate, and the OER catalyst has high activity and high stability under the condition of industrial current density.

碳纳米管成型体、电化学水分解用电极和它们的制造方法、电化学水分解装置

NºPublicación:  CN120418195A 01/08/2025
Solicitante: 
日本多宁股份有限公司国立大学法人东京大学
CN_120418195_PA

Resumen de: TW202500506A

Provided are: a carbon nanotube molded body containing carbon nanotubes, wherein the specific surface area of the carbon nanotube molded body is 700 m2/g or more, the pore distribution of the carbon nanotube molded body is 3-15 nm, the tensile strength of the carbon nanotube molded body is 45 MPa or more, and the Young's modulus of the carbon nanotube molded body is 1600 MPa or more; and a method for producing the carbon nanotube molded body. Also provided are: an electrode for electrochemical water splitting that contains the carbon nanotube molded body and platinum supported on the carbon nanotube molded body and a method for producing the same; and an electrochemical water splitting device provided with the electrode for electrochemical water splitting.

运行水电解槽的方法

NºPublicación:  CN120418478A 01/08/2025
Solicitante: 
阿尔凯莫公司
CN_120418478_A

Resumen de: WO2025042413A1

A method of running a water electrolyzer that can operate on seawater without a significant voltage rise. In some embodiments, the method includes the use of specific ionomers in the catalyst layer. In some embodiments, the method involves using a Break-In Procedure. In some embodiments, the method can include periodic interruption of the voltage to the AEM electrolyzer.

氨分解催化剂和用于生产其的方法

NºPublicación:  CN120418004A 01/08/2025
Solicitante: 
浦项控股股份有限公司浦项产业科学研究院
CN_120418004_PA

Resumen de: AU2023396734A1

The present invention relates to an ammonia decomposition catalyst and a method for producing same and, more specifically, to an ammonia decomposition catalyst containing alumina (Al

GREEN HYDROGEN PRODUCTION THROUGH ELECTROLYSIS OF HIGH-PRESSURE AND HIGH-TEMPERATURE UPSTREAM BOILER BLOWDOWN WASTE WATER STREAM

NºPublicación:  WO2025159940A1 31/07/2025
Solicitante: 
SAUDI ARABIAN OIL CO [SA]
ARAMCO SERVICES CO [US]
SAUDI ARABIAN OIL COMPANY,
ARAMCO SERVICES COMPANY
WO_2025159940_PA

Resumen de: WO2025159940A1

Described is a system and method for green hydrogen production via electrolysis. The system includes a steam boiler unit (204) configured to produce a discharged waste water stream (200), an electrolysis unit (300) configured to produce hydrogen (302) and oxygen (304) from the discharged waste water stream (200); and a hydrogen storage unit (708) for storing a portion of the hydrogen (302) produced by the electrolysis unit (300) as a product.

OXYGEN EVOLUTION REACTION CATALYST

NºPublicación:  US2025246642A1 31/07/2025
Solicitante: 
JOHNSON MATTHEY HYDROGEN TECH LIMITED [GB]
JOHNSON MATTHEY HYDROGEN TECHNOLOGIES LIMITED
JP_2024529245_A

Resumen de: US2025246642A1

The present invention provides an oxygen evolution reaction catalyst, wherein the oxygen evolution reaction catalyst is an oxide material comprising iridium, tantalum and ruthenium: wherein the oxygen evolution catalyst comprises a crystalline oxide phase having the rutile crystal structure; wherein the crystalline oxide phase has a lattice parameter a of greater than 4.510 Å.

STABLE ION EXCHANGE MEMBRANES WITH RADICAL SAVENGER

NºPublicación:  US2025246660A1 31/07/2025
Solicitante: 
THE CHEMOURS COMPANY FC LLC [US]
THE CHEMOURS COMPANY FC, LLC
JP_2024537326_PA

Resumen de: US2025246660A1

Described is a long-lasting, heavy-duty ion exchange membrane comprising a fluorinated ionomer, a CexM1-xOy nanoparticle, and optional additives; where x is 0.2-0.9, y is 1-3, and M is Zr, Gd, Pr, Eu, Nd, La, Hf, Tb, Pd, Pt, or Ni. Optional additives may include reinforcement layers, which may be embedded in the ion exchange membrane. Such membranes are formed from ion exchange polymer dispersions and are useful to form membrane assemblies for fuel cell or water electrolysis applications. The present membranes and membrane assemblies have improved chemical stability and durability in such applications.

ELECTROLYSER SYSTEM

NºPublicación:  WO2025157947A1 31/07/2025
Solicitante: 
OUE STARGATE HYDROGEN SOLUTIONS [EE]
O\u00DC STARGATE HYDROGEN SOLUTIONS
WO_2025157947_PA

Resumen de: WO2025157947A1

The present invention discloses an electrolyser system and a method for operating the electrolyser system. The electrolyser system comprises an electrolyser stack further comprising a cathode compartment and an anode compartment separated by a diaphragm. A catholyte inlet of the stack is configured for supplying catholyte to the cathode compartment of the stack and an anolyte inlet configured for supplying anolyte to the anode compartment of the stack. A catholyte outlet transports gas-electrolyte mixture from the cathode compartment to a hydrogen separator and an anolyte outlet transports gas-electrolyte mixture from the anode compartment to an oxygen separator. A pressure control unit is configured to establish a predefined differential pressure between the cathode compartment and the anode compartment of the stack by maintaining the pressure at the cathode compartment greater than the pressure at the anode compartment.

NUCLEAR PROCESS STEAM DRIVEN HYDROTHERMAL DECOMPOSITION OF METHANE FOR LOW-TEMPERATURE GREEN METHANOL PRODUCTION

NºPublicación:  WO2025160419A1 31/07/2025
Solicitante: 
NUSCALE POWER LLC [US]
NUSCALE POWER, LLC
WO_2025160419_PA

Resumen de: WO2025160419A1

An integrated energy system including a power plant is discussed herein. In some examples, the integrated energy system may include a power plant configured to generate steam, a hydrothermal decomposition reactor configured to receive at least a portion of the steam (H2O) from the power plant to react with Methane (CH4) within the hydrothermal decomposition reactor to produce Hydrogen (H2) and Carbon Dioxide (CO2), a first separation unit configured to separate the Hydrogen (H2) and the Carbon Dioxide (CO2), a Solid Oxide Stack configured to receive at least a portion of the Carbon Dioxide (CO2) and to produce Carbon Monoxide (CO), a second separation unit configured to separate the Carbon Dioxide (CO2) from the Carbon Monoxide (CO), and a methanol synthesis reactor configured to receive at least a portion of the Hydrogen (H2) and at least a portion of the Carbon Monoxide (CO) to produce Methanol (CH3OH).

FLUID SEPARATION SYSTEMS FOR AN ELECTROCHEMICAL SYSTEM

NºPublicación:  WO2025159903A1 31/07/2025
Solicitante: 
ELECTRIC HYDROGEN CO [US]
ELECTRIC HYDROGEN CO
WO_2025159903_PA

Resumen de: WO2025159903A1

A system for separating a fluid in the operation of an electrochemical system includes: a cathode separator configured to separate a fluid into a first stream having hydrogen gas and a second stream having water and dissolved hydrogen; and a makeup water tank. The makeup water tank is configured to: receive the second stream from the cathode separator; operate at a pressure that is greater than atmospheric pressure and less than an operating pressure of the cathode separator; and separate at least a portion of the dissolved hydrogen from the water via a reduction in pressure from the cathode separator to the makeup water tank to provide a purified water stream and hydrogen gas. The hydrogen gas from the makeup water tank is configured to be transferred out of the makeup water tank and the purified water stream is configured to be transferred out the makeup water tank.

SYSTEM AND METHOD FOR MAKING GREEN HYDROGEN

NºPublicación:  WO2025160516A1 31/07/2025
Solicitante: 
POWER & CONCEPTS LLC DBA THE CHRYSLER GROUP [US]
POWER & CONCEPTS, LLC DBA THE CHRYSLER GROUP
WO_2025160516_PA

Resumen de: WO2025160516A1

A system and method of making hydrogen from water. A reaction vessel is provided with an outer shell, a central shaft, and concentric inner tubes separated by annular spaces. Water is delivered to the annular spaces by a water pump through an inlet defined in the reaction vessel. The water courses along a tortuous flow path. That path begins at an inner annular space around a central shaft. It ends at an outer annular space. The water emerges from the reaction vessel through an outlet associated with a manifold. A vibratory stimulus is applied to the reaction vessel and water. Water molecules are dissociated into hydrogen molecules and oxygen atoms. These reaction products are delivered through the manifold along an effluent flow path to a receiving pressure vessel before deployment to a sub-assembly for harnessing clean energy.

ELECTROLYTIC CELL STACK, ELECTROLYTIC CELL CARTRIDGE, ELECTROLYTIC CELL MODULE, AND METHOD FOR MANUFACTURING ELECTROLYTIC CELL STACK

NºPublicación:  WO2025159042A1 31/07/2025
Solicitante: 
MITSUBISHI HEAVY IND LTD [JP]
MITSUBISHI POWER LTD [JP]
\u4E09\u83F1\u91CD\u5DE5\u696D\u682A\u5F0F\u4F1A\u793E,
\u4E09\u83F1\u30D1\u30EF\u30FC\u682A\u5F0F\u4F1A\u793E
WO_2025159042_PA

Resumen de: WO2025159042A1

The purpose of the present disclosure is to provide an electrolytic cell stack capable of increasing the amount of product generated by electrolysis while suppressing the temperature rise of the cell stack. An electrolytic cell stack (101) according to the present disclosure comprises: an electrolysis unit cell (105) that has a hydrogen electrode containing Ni, an oxygen electrode, and a solid electrolyte membrane and is formed in the circumferential direction of a base tube; and an interconnector that electrically connects a plurality of electrolysis unit cells arranged in the axial direction of the base tube. When the distance between the ends of the oxygen electrode, oriented in the axial direction of the base tube, in each electrolysis unit cell is defined as the width W of the electrolysis unit cell, and the area on the base tube in which the plurality of electrolysis unit cells are arranged is divided into a first end portion (10), a central portion (11), and a second end portion (12) along the axial direction, the widths W1, W3 of the electrolysis single cells (105b, 105c) positioned in the first end portion and/or the second end portion is 1.5 to 3 times greater than the width W2 of the electrolysis unit cell (105a) positioned in the central portion.

MULTI-ELECTROLYTIC-CELL SERIES-PARALLEL HYDROGEN PRODUCTION CONTROL METHOD AND POWER GENERATION SYSTEM

NºPublicación:  WO2025156736A1 31/07/2025
Solicitante: 
UNIV WUYI [CN]
\u4E94\u9091\u5927\u5B66
WO_2025156736_PA

Resumen de: WO2025156736A1

Provided in the present application are a multi-electrolytic-cell series-parallel hydrogen production control method and a power generation system. The method in the present application comprises: acquiring electrolysis power parameters of a plurality of electrolytic cells and a real-time generation power of a power generation system; and then, on the basis of the plurality of electrolysis power parameters and the real-time generation power, controlling the plurality of electrolytic cells to sequentially and repeatedly execute electrolysis start-stop operations, wherein each electrolysis start-stop operation comprises: comparing the magnitude of a target round startup output power with the magnitude of a rated minimum electrolysis power of a target electrolytic cell; on the basis of a corresponding magnitude determination, performing subsequent control operations; and then in the subsequent control operations, performing a corresponding control operation by means of determining whether the target round startup output power exceeds a danger warning threshold power. Thus, the hydrogen production efficiency and flexibility of the plurality of electrolytic cells in the hydrogen production power generation system are improved, the stability of the hydrogen production power generation system is improved, and the service life of the hydrogen production power generation system is prolonged.

WATER ELECTROLYSIS ELECTRODE, WATER ELECTROLYSIS CELL, WATER ELECTROLYSIS DEVICE, AND METHOD FOR MANUFACTURING WATER ELECTROLYSIS ELECTRODE

NºPublicación:  US2025243592A1 31/07/2025
Solicitante: 
PANASONIC INTELLECTUAL PROPERTY MAN CO LTD [JP]
Panasonic Intellectual Property Management Co., Ltd
WO_2024057717_PA

Resumen de: US2025243592A1

A water electrolysis electrode includes a conductive substrate and a layered double hydroxide layer. The layered double hydroxide layer is disposed on a surface of the conductive substrate. The layered double hydroxide layer includes two or more transition metals. The layered double hydroxide layer includes a chelating agent.

FRAME FOR PEM ELECTROLYSIS CELLS AND PEM ELECTROLYSIS CELL STACK FOR GENERATING HIGH-PRESSURE HYDROGEN BY MEANS OF DIFFERENTIAL PRESSURE ELECTROLYSIS

Nº publicación: US2025243590A1 31/07/2025

Solicitante:

IGAS ENERGY GMBH [DE]
IGAS ENERGY GMBH

JP_2024536518_PA

Resumen de: US2025243590A1

The invention relates to a novel frame for a PEM electrolysis cell and for a PEM electrolysis cell stack. The subject matter of the invention is the frame, a PEM electrolysis cell and stack-type PEM electrolysis devices, which comprise the frame according to the invention, preassembled components and methods for producing preassembled components and stack-type PEM electrolysis devices. The frame, PEM electrolysis cell and stack-type PEM electrolysis devices according to the invention are suitable for generating high-pressure hydrogen in combination with the use of thin proton exchange membranes. The invention is based on a novel frame- and sealing-concept. The invention also relates to a cover for stack-type PEM electrolysis devices.

traducir