Resumen de: PL448633A1
Przedmiotem zgłoszenia jest generator wodoru i tlenu dla zastosowań medycznych, wytwarzający gaz HHO na drodze reakcji utleniania-redukcji elektrolitu po doprowadzeniu do elektrod potencjału anody i katody. Generator ma dwie płaskie anody (13) i jedną katodę (14) oraz między nimi blachy neutralne (15), odseparowane od siebie dielektrycznymi przekładkami (3), połączone poprzez dwa współosiowe otwory w jeden zespół śrubami scalającymi elektrody (9) i na każdą śrubę (9) nasunięta jest rurka izolacyjna (16) separująca śrubę od katody (14) oraz przekładek (3) i śruby (9) łączą elektrycznie ze sobą obie anody (13) i generator umieszczony jest w szklanym pojemniku na elektrolit (1), zamkniętym szczelnie od dołu pokrywą dolną (5), a do górnej części pojemnika (1) przymocowana jest szczelnie pokrywa górna (4), gdzie w pokrywie górnej (4) umieszczone są szczelnie w dedykowanych otworach śrubowe przyłącza anody (6), katody (7) oraz przewód odprowadzający gaz HHO, przy czym katoda (14) oraz jedna z anod (13) posiadają sztywne wyprowadzenia elektrycznie połączone odpowiednio z przyłączem katody (7) oraz przyłączem anody (6) i śrubowe przyłącza anody (13) i katody (14), odpowiednio (6 i 7), stanowią mocowanie generatora do pokrywy górnej (4).
Resumen de: KR20250163681A
본 발명은 CCS 구조 및 CCM 구조가 동시에 적용되고, 원자막 증착법을 이용하여CCS 구조에서 다공성 기재의 일부 영역만이 코팅되도록 함으로서 적은 양의 촉매 사용량으로도 우수한 활성을 구현할 수 있는 수전해용 전극 및 이를 포함하는 수전해 셀에 관한 것이다.
Resumen de: AU2025203497A1
A system and a method for stabilizing hydrogen flow to a downstream process in a facility determining a hydrogen density and pressure profiles in the hydrogen storage unit 5 for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream process, and controlling the operation of the downstream process based on the operating 10 target hydrogen flows. A system and a method for stabilizing hydrogen flow to a downstream process in a 5 facility determining a hydrogen density and pressure profiles in the hydrogen storage unit for different target net hydrogen flows at different time intervals of a time horizon of a renewable power availability profile, determining an operating target net hydrogen flow of a hydrogen feed to the downstream process, determining a target direct hydrogen flow of a hydrogen feed and a target stored hydrogen flow of a hydrogen feed to the downstream 10 process, and controlling the operation of the downstream process based on the operating target hydrogen flows. ay a y
Resumen de: US2025354272A1
Provided is an electrochemical system comprising a water electrolysis stack with an anode and a cathode. The system includes a reaction fluid supply line that supplies a reaction fluid to the anode, a first gas-liquid separator located in the reaction fluid supply line to separate the reaction fluid into gaseous and liquid components, and a first filter part positioned upstream of the first gas-liquid separator to filter the reaction fluid. The system further includes a first circulation line that circulates the liquid reaction fluid from the anode back to the first gas-liquid separator. Additionally, a second gas-liquid separator in a discharged fluid discharge line is connected to the cathode, with a second circulation line configured to maintain the ionic purity of the discharged fluid. The system also includes a mechanism to monitor ionic conductivity and selectively control the operation of the water electrolysis stack based on detected ionic levels.
Resumen de: CN120987259A
本发明涉及氢气生成组合物及其制造方法、以及氢气的生成方法。本发明提供能够以高收率和高生成量生成氢气的手段。本发明的一个方式涉及一种氢气生成组合物,其含有粉体形态的氢化镁和粉体形态的柠檬酸,柠檬酸相对于氢化镁的质量比为2.5~3.5的范围,所述氢气生成组合物为加压成型物形态。本发明的另一方式涉及氢气生成组合物的制造方法和氢气的生成方法。
Resumen de: AU2023381476A1
A cell frame adapted for use in a pressurised electrolyser cell stack is provided. From an inner circumferential rim of the cell frame, a circumferential radial shelf with inwardly tapering thickness is provided, such that an annular space between a circumferential radial shelf and a neighbouring circumferential radial shelf is provided when cell frames are stacked in alignment with each other, and that outwardly of the circumferential radial shelf, a mobility link is provided which connects the radial shelf to the remaining cell frame.
Resumen de: US2025361635A1
A control device for an electrolysis system includes a deterioration prediction unit that predicts a degree of deterioration of each of a water electrolysis stack and a compression stack, and a supplied electrical current control unit that controls an electrical current that is supplied to the water electrolysis stack and an electrical current that is supplied to the compression stack, wherein the supplied electrical current control unit controls the electrical current that is supplied to the stack having a larger degree of deterioration from among the water electrolysis stack and the compression stack to be constant, and adaptively controls the electrical current that is supplied to the stack having a smaller degree of deterioration from among the water electrolysis stack and the compression stack.
Resumen de: WO2024189288A1
The invention relates to a part comprising a metal substrate and a layer of material based on amorphous carbon having sp2 hybridised bonds and sp3 hybridised bonds, wherein the layer has: - a first content of sp3 hybridised bonds on the substrate side; and - a second content of sp3 hybridised bonds on the side of an outer surface of the layer; - the first content being greater than the second content, characterised in that an average content within the layer of sp3 hybridised bonds is between 5% and 65%, and preferably between 5% and 45%, and in that the content of sp3 hybridised bonds changes continuously within the layer.
Resumen de: WO2025238387A1
The subject of the invention relates to an electric energy conversion unit, especially for the use of electricity with time-varying power for the production of hydrogen gas, which has a current conducting piece (2) provided with an input gate (3) that may be connected to the electrical energy supply unit (4), at least one hydrogen gas production subunit (20) connected to the current conducting piece (2), and at least one hydrogen gas storage tank (30) connected to the hydrogen gas production subunit (20), where the hydrogen gas production subunit (20) has an electrolysing cell (21), and the gas output (21a) of the electrolysing cell (21) is connected to the input pipe (31)of the hydrogen gas storage tank (30), and the hydrogen gas storage tank (30) is provided with an unloading pipe (32). It is characteristic of the invention that an electric current regulation subunit (10) is fitted between the input gate (3) of the current conducting piece (2) and the hydrogen gas production subunit (20), where the electric current regulation subunit (10) has at least one transformer (11), a rectifier device (12) and a current intensity regulation device (13), and the current intensity regulation device (13) is interposed between the input gate (3) of the current conducting piece (2) and the input (11a) of the transformer (11), or between the output (11) of the transformer (11) and the input (12a) of the rectifier device (12), or between two transformers (11) in the case of several transfor
Resumen de: US2025353739A1
The present invention is directed to piezo photocatalytic process for the production of hydrogen from water, wherein the process comprises the steps of: (a) providing non-metal-doped barium titanate which includes at least one defect; (b) contacting the non-metal-doped barium titanate provided in step (a) with water to form a mixture; and (c) subjecting the mixture formed in step (b) to: (i) actinic radiation; and (ii) mechanical force, to produce hydrogen from the water, as well as non-metal-doped barium titanate and methods of production thereof.
Resumen de: US2025352946A1
Hydrogen gas purifier electrochemical cells, systems for purifying hydrogen gas, and methods for purifying hydrogen gas are provided. The cells, systems, and methods employ double membrane electrode (DMEA) electrochemical cells that enhance purification while avoiding the complexity and cost of conventional cells. The purity of the hydrogen gas produced by the cells, systems, and methods can be enhanced by removing at least some intermediate gas impurities from the cells. The purity of the hydrogen gas produced by the cells, systems, and methods can also be enhanced be introducing hydrogen gas to the cells to replenish any lost hydrogen. Water electrolyzing electrochemical cells and methods of electrolyzing water to produce hydrogen gas are also disclosed.
Resumen de: US2025352926A1
A water sealed tank include a tank body and a heat conducting pipe. The tank body includes a gas-liquid inlet, a water outlet, and a gas outlet. The gas outlet is close to or located on a top portion of the tank body and communicates with the tank body. The water outlet is close to or located on a bottom portion of the tank body. The gas-liquid inlet communicates with the tank body and is used for feeding a gas-water mixture into the tank body, and a gas separated from the gas-water mixture inside the tank body is discharged from the gas outlet. At least a part of the heat conducting pipe is located inside the tank body, and used for a liquid to flow through, to allow the heat conducting pipe to exchange heat with water inside the tank body and heat the water inside the tank body.
Resumen de: AU2024237817A1
The present invention relates to an electrolyser system (10) comprising at least one electrolyser (20), the electrolyser (20) comprising at least one steam inlet (41) and at least one off-gas outlet (38; 39), and a turbocharger (62) for compressing off-gas from the electrolyser (20). The turbocharger (62) comprises a drive fluid inlet, a drive fluid outlet, a compression fluid inlet, a compressed fluid outlet, a compressor (13) and a turbine (12). The turbine (12) is configured to drive the compressor (13). The drive fluid outlet of the turbocharger (62) is fluidically connected to the at least one steam inlet (41) of the electrolyser (20). The at least one off-gas outlet (38; 39) of the electrolyser (20) is fluidically connected to the compression fluid inlet of the turbocharger (62). The system (10) can further can comprise a steam source fluidically connected to the drive fluid inlet of the turbocharger (62) for powering the turbine (12) using pressurised steam.
Resumen de: WO2025240133A1
A method utilizing the multi-metal composition is disclosed. The multi-metal composition may comprise: an alloy comprising at least five elements selected from the group consisting of Co, Cr, Fe, Mn, Ni, Al, Mg, Cu, Zn, Zr, Ru, Rh, Pd, Ag, W, Re, Ir, Pt, Pd, Au, Ce, Yb, Sn, Ca, Be, Mo, V, W, and Sr. The method may comprise: providing a multi-metal composition comprising an alloy comprising at least five elements selected from the group consisting of Co, Cr, Fe, Mn, Ni, Al, Mg, Cu, Zn, Zr, Ru, Rh, Pd, Ag, W, Re, Ir, Pt, Pd, Au, Ce, Yb, Sn, Ca, Be, Mo, V, W, and Sr; and interacting a gas stream comprising hydrogen sulfide with the multi-metal composition.
Resumen de: WO2025238301A1
The present invention is providing a nanoparticle, preferably a nano-urchin particle, comprising plasmonic material and a catalytic metal, wherein said plasmonic material comprises tungsten oxide W18O49 and the catalytic metal is selected from a group consisting of: platinum (Pt), iridium (Ir), nickel (Ni), iron (Fe), molybdenum (Mo), ruthenium (Ru), and cobalt (Co), wherein the nanoparticle comprises 0.2 wt. % - 3.0 wt. % of said catalytic metal; and wherein said nanoparticle is capable of catalysing a hydrogen evolution reaction or an oxygen evolution reaction. The present invention is also providing a solvothermal method for producing a nanoparticle product comprising the steps of: a) dissolving a reagent comprising plasmonic material into a first solvent to obtain a first solution; b) adding to said first solution i) a reagent comprising a catalytic metal and ii) α-naphthol to obtain a second solution; c) subjecting said second solution to heat treatment at temperature of at least 150 °C, preferably at 180 °C; and d) collecting the nanoparticle product from the heat treated second solution, preferably by centrifugation.
Resumen de: WO2025239823A1
A hydrogen providing system (1) for providing hydrogen to an ironworks plant (4) in a heavy industry site (3). The hydrogen providing system (1) comprises an electrical power control unit (5) connected to a main electrical line (2) providing alternating current, AC, power, an electrolyser (6) configured to produce hydrogen gas, at least one hydrogen storage tank (7) configured to store hydrogen gas, and a fuel mixer (8) in fluid communication with and configured to direct the flow of hydrogen between the electrolyser (6), the hydrogen storage tank (7), and the ironworks plant (4). The hydrogen providing system (1) also comprises an electrical mixer (9) connected to and configured to control the flow of current between an AC current power line (10) connected to the electric power control unit (5), which is configured to control the AC power to the AC current power line (10),a first direct current, DC, power line (11) connected to the electrolyser, and a second DC power line (12) connected to a solar power plant (13).
Resumen de: WO2025237774A1
The invention relates to a method for producing an electrode (10) for use in an electrolysis cell, comprising providing a metal flat material portion (18), wherein the flat material portion extends in a planar manner in a main plane, producing at least one three-dimensional contact structure (16) in the flat material portion (18), comprising introducing at least three slots (44) into the flat material portion in such a way that a connection piece (26) formed between two adjacent slots has a plurality of the through-openings, wherein the slots are distributed around a reference region (46), and comprising moving the reference region out of the main plane such that the reference region is displaced to a contact plane which is offset with respect to the main plane, the slots thereby being expanded, in order to form a contact region (24) of the contact structure (16). The invention also relates to such an electrode and to a stack arrangement having such an electrode.
Resumen de: CN120303449A
The present invention relates to a symmetric separator membrane for electrolyzing alkaline water and having a uniform pore distribution.
Resumen de: JP2025171335A
【課題】本発明は、水分と反応して分子状水素を発生可能ながらも、金属探知機にかけても誤探知されない水素発生材料を提供することを目的とする。【解決手段】本発明の水素発生材料は、複数の粒子状水素発生剤がマトリックス樹脂中に分散されており、前記マトリックス樹脂中の粒子状水素発生剤の含有量は0.6重量%以上6重量%以下であり、前記粒子状水素発生剤の体積基準平均径D50が1μm以上50μm以下であることを特徴とする。【選択図】図1
Resumen de: JP2025171336A
【課題】本発明は、酸化防止と共に菌の増殖を抑制して食品や化粧品等の劣化を抑制可能な水素発生材料を提供することを目的とする【解決手段】本発明の水素発生材料は、複数の粒子状水素発生剤と抗菌剤がマトリックス樹脂中に分散されており、前記マトリックス樹脂中に、粒子状水素発生剤は0.6重量%以上6重量%以下、前記抗菌剤は0.1重量%以上10重量%以下含有している。【選択図】図1
Resumen de: JP2025171628A
【課題】容器の破損を抑制しつつ、水素を発生させる反応容器の技術の提供。【解決手段】水素化ホウ素ナトリウムと水と酸とから、水素と四ホウ酸ナトリウムとを生成させる反応容器が提供される。この反応容器は、前記四ホウ酸ナトリウムが収容される反応容器であって、水和によって体積が膨張した前記四ホウ酸ナトリウムを許容する許容構造を有する反応容器。【選択図】図2
Resumen de: WO2025237667A1
Disclosed is a method for preparing an electrochemically activated electrode for electrochemical reduction reactions, the electrode comprising at least one catalytic material based on at least one group VIB metal supported on an electrically conductive support, the method consisting in carrying out an electrochemical treatment on an electrode comprising at least one catalytic material based on at least one group VIB metal supported on an electrically conductive support. The electrochemical treatment, which is carried out by cyclic voltammetry (CV) or chronoamperometry (CA), consists of a step of oxidation under specific conditions.
Resumen de: WO2025237668A1
Disclosed is a method for preparing a catalytic material of an electrode for electrochemical reduction reactions, the catalytic material comprising an active phase based on at least one group VIB metal and fluorine. The method consists in bringing a solid material based on at least one group VIB metal sulphide into contact with a gas comprising at least difluorine, at a temperature of between -50°C and 150°C, for a duration of between 15 seconds and 120 minutes, the gas having a difluorine concentration of between 0.1 and 100% by volume relative to the total volume of the gas, a pressure of between 0.001 and 0.2 MPa, and a PPH of between 0.01 and 200 h-1.
Nº publicación: WO2025237669A1 20/11/2025
Solicitante:
IFP ENERGIES NOW [FR]
IFP ENERGIES NOUVELLES
Resumen de: WO2025237669A1
Disclosed is a method for preparing an electrochemically activated electrode for electrochemical reduction reactions, the electrode comprising at least one catalytic material based on at least one fluorinated group VIB metal, the method consisting in carrying out an oxidative electrochemical treatment on an electrode comprising at least one catalytic material based on at least one fluorinated group VIB metal.