Resumen de: EP4603181A1
The invention provides a novel and efficient catalyst for HER composed of Ru nanoparticles dispersed over a support consisting of titanium oxynitride and high surface area carbon material, such as graphene oxide, (TiON-C) with a particularly low Ru loading of only 6 wt.%. In an alkaline electrolyte, the Ru/TiON-C composite significantly surpasses the HER performance of the Ru/C analog. More importantly, Ru/TiON-C is both intrinsically (nearly 3 times higher turnover frequency) and practically (4 times higher mass activity) better performing HER catalyst than the commercial Pt/C benchmark.
Resumen de: AU2023359478A1
The invention relates to a method for joining a stack of elements together, the method comprising the steps of: individually joining subassemblies of the elements together; joining the subassemblies together by arranging a joint between each subassembly to form the stack of elements; applying consecutive phases of heating and cooling to the stack of elements while applying at least one clamping action to the stack of elements between two different phases of heating and cooling.
Resumen de: AU2023359480A1
The invention relates to a bipolar plate for an electrolytic cell, the plate comprising, on at least one of its main faces: a first zone running circumferentially; a second zone running circumferentially so as to be bordered on the outside by the first zone; a third zone running circumferentially so as to be bordered on the outside by the second zone, the various zones being arranged on the periphery of the associated main face. The invention also relates to the corresponding cell, electrolyzer cell and assembly method.
Resumen de: WO2024081205A1
A composition that produces hydrogen includes a nanoparticle or plurality of nanoparticles; an external source of electrons such as an electrogenic bacterium or a plurality of electrogenic bacteria and a carbon source; and an aqueous medium. The nanoparticles and the aqueous medium are combined in a mixture; upon exposure to electromagnetic radiation with a wavelength in the absorption profile of the nanoparticles, the nanoparticles generate an electron that can reduce a proton in the aqueous medium; and the source of electrons is capable of reducing the nanoparticles. The nanoparticles may comprise cadmium chalcogenide or water-soluble cadmium chalcogenide quantum dots. The electrogenic bacterium or bacteria may comprise Shewanella oneidensis, a Geobacter species or any bacterium capable of extracellular electron transfer. The electromagnetic radiation has a wavelength of between approximately 400 and 1100 nanometers, or preferably 530 nm. The aqueous medium may be wastewater and the carbon source may comprise lactate.
Resumen de: US2025236972A1
Electrolyzer for production of hydrogen gas and comprising a stack of bipolar electrodes sandwiching ion-transporting membranes between each two of the bipolar electrodes. Each bipolar electrode comprises two metal plates welded together back-to-back forming a coolant compartment in between and having a respective anode surface and an opposite cathode surface, each of which is abutting one of the membranes. The plates are embossed with a major vertical channel and minor channels in a herringbone pattern for transport of oxygen and hydrogen gases. The embossed herringbone pattern is provided on both sides of the metal plates so as to also provide coolant channels in a herringbone pattern inside the coolant compartment.
Resumen de: WO2024081426A2
The present disclosure relates to circuits for connecting components of a hydrogen plant to a power grid to power the components in an efficient manner. In one implementation, power-side alternate current (AC) to direct current (DC) converters may be connected to a source power grid without the need for an isolation transformer by providing separate buses between the power-side AC-DC converters and load-side DC-DC converters instead of a shared DC bus between the converters. Other implementations for connecting components of a hydrogen plant to a power grid may include an adjustable transformer, such as a tappable transformer or an autotransformer, to connect any number of auxiliary loads of the plant to the power grid. The adjustable transformer may provide for various types of auxiliary load devices to connect to the power provided by the transformer at the same time, including both three-phase devices and one-phase devices.
Resumen de: US2025257488A1
An electrolysis system includes at least one electrolyzer for generating hydrogen and oxygen as products, and at least two downstream compressors for compressing at least one of the products produced in the electrolyzer. A method of operating the electrolysis system in a part-load operation of the electrolyzer that is optimized in terms of efficiency and is also cost-effective. During the part load operation of the electrolyzer, a first group of compressors is operated in part-load operation, while the compressor(s) of a second group can be switched on or off individually for full-load operation.
Resumen de: WO2025168743A1
The present disclosure provides an improved ammonia-producing plant and process for the simultaneous production of hydrogen and ammonia as end products, by integrating a hydrogen separation unit into an ammonia-producing plant. More in particular, the present disclosure provides an ammonia production plant comprising (a) a reforming section, (b) a purification section, downstream of the reforming section, and (c) an ammonia synthesis section, downstream of the purification section, wherein the plant further comprises (d) a hydrogen separation unit, wherein the hydrogen separation unit has an inlet for a hydrogen-containing gas stream, a first outlet for a pure hydrogen gas, particularly for providing the pure hydrogen to a hydrogen network, and a second outlet for a tail gas, particularly wherein the inlet of the hydrogen separation unit is in fluid communication with a hydrogen-containing gas stream in the purification section and/or in the ammonia synthesis section, and/or with a hydrogen-containing gas stream between the purification section and the ammonia synthesis section of the ammonia production plant, and, particularly, wherein the second outlet is in fluid communication with the reforming section and/or with the purification section of the ammonia production plant.
Resumen de: WO2025169719A1
This water electrolysis system comprises: a water electrolysis cell stack; a water separator that is connected to the water electrolysis cell stack and separates water discharged from the water electrolysis cell stack from gas; a water circulation path that is provided with a water circulation pump and circulates the water separated by the water separator; a water supply path that is separate from the water circulation path, is provided with a water supply pump, and supplies the water to the water electrolysis cell stack; an ion exchange resin provided in the water circulation path; and a heat exchanger that is provided on the upstream side of the ion exchange resin in the water circulation path, and that cools the water in the water circulation path on the basis of the temperature of the water supplied from the water supply path to the water electrolysis cell stack.
Resumen de: KR20250122697A
본 발명에 의한 수소발생 촉매 전극용 백금-탄소나노튜브 복합체는 탄소나노튜브 표면에 백금이 도입되며, 백금 함량이 20 중량% 이하인 것을 특징으로 한다.
Resumen de: WO2024126749A1
There is provided a multi-layered proton exchange membrane for water electrolysis, comprising: at least two recombination catalyst layers, each of the at least two recombination catalyst layers comprising a recombination catalyst and a first ion exchange material, wherein at least two recombination catalyst layers are separated by a region devoid of or substantially devoid of a recombination catalyst, and at least two reinforcing layers, each of the at least two reinforcing layers comprising a microporous polymer structure and a second ion exchange material which is at least partially imbibed within the microporous polymer structure.
Resumen de: US2025259714A1
A determination method determines whether or not target molecules including elemental hydrogen are electrolytic hydrogen-containing molecules which include: hydrogen molecules produced by water electrolysis; or molecules produced using the hydrogen molecules as a raw material. In the determination method, the method includes determining that the target molecules are the electrolytic hydrogen-containing molecules when an abundance ratio of deuterium to light hydrogen in the target molecules is less than or equal to a predetermined threshold which is smaller than an abundance ratio of deuterium to light hydrogen in nature.
Resumen de: AU2024301470A1
The present invention relates to an electrolysis system (100) comprising a renewable power generation plant (1), an electrolysis plant (3), a transformer station (27) and an AC bus bar (5), wherein the renewable power generation plant (1) is connected to the public electricity grid at a point of connection (POC) via the AC bus bar (5) and comprises a power plant controller (7) and a self-controlled converter (9) that is connected to the AC bus bar (5). The electrolysis plant (3) comprises an electrolysis active power controller (11) and a converter arrangement (13) that is connected to the AC bus bar (5), and wherein the electrolysis active power controller (11) is configured for controlling active power (P) of the electrolysis plant (3) at the AC bus bar (5) and the power plant controller (7) is configured for controlling reactive power (Q) at the point of connection (POC).
Resumen de: US2025257475A1
The invention relates to a method for operating an electrolysis plant which has an electrolyzer for generating hydrogen and oxygen as product gases, wherein water is fed as educt water to the electrolyzer and split into hydrogen and oxygen at an ion-exchange membrane. Prior to splitting, the educt water is brought into a thermodynamic state close to the boiling point of the water in terms of the pressure and temperature and is fed in this state to the membrane. Educt water is brought to a boil at the membrane and converted into the gas phase, wherein the water in the gas phase is split at the membrane. There is also described an electrolysis plant having an electrolyzer for generating hydrogen and oxygen as product gases.
Resumen de: US2025257476A1
A method can include coupling sulfur dioxide depolarized electrolysis (e.g., electrochemical oxidation of sulfur dioxide to sulfuric acid with electrochemical reduction of water to hydrogen) with the contact process to facilitate formation of high concentration sulfuric acid with concurrent hydrogen production. The sulfuric acid and hydrogen can optionally be used cooperatively for downstream processes (e.g., metal extraction from ore, fertilizer production, hydrocarbon processing, etc.).
Resumen de: US2025257477A1
A method of electrolysing hydrogen bromide comprising the steps i) synthesizing sulfuric acid such that hydrogen bromide is produced, ii) providing an electrolytic cell comprising an anode, a cathode, and a membrane sandwiched between the anode and the cathode, iii) feeding a first composition comprising hydrogen bromide and water to the anode, iv) feeding a second composition comprising hydrogen bromide and water to the cathode, and v) operating the electrolytic cell to produce hydrogen at the cathode.
Resumen de: US2025257483A1
Clean version of Abstract A catalyst and anode for hydrogen production by electrolysis as well as a preparation method, activation method and use thereof are provided. The anode for hydrogen production by electrolysis includes a catalyst which is nickel iron barium hydrotalcite with a nano hexagonal sheet structure and a thickness of 100-200 nm. The catalyst can be prepared by a one-step solvothermal reaction method. Alkaline-earth metal ions are evenly doped in the nickel iron barium hydrotalcite and are in atomic level dispersion, so that the anode for hydrogen production by electrolysis based on the catalyst, when being applied to a process for hydrogen production by electrolysis of an aqueous solution containing chlorine ions, not only can maintain good catalytic performance, but also has greatly improved chlorine ion corrosion resistance, leading to significant improvement of working stability and service life.
Resumen de: US2025257484A1
An electrode suitable for carrying out oxygen evolution reaction in the electrolysis of water in alkaline conditions. The electrode includes a ceramic material having a stability factor (SF) between 1.67≤SF≤2.8 and which is calculated by formula (II), where rO is the ionic radius of oxide ion (O2−), rB,av is the weighted average ionic radius of a transition metal, nA,Av is the weighted average oxidation state of a rare earth or alkaline earth metal, rA,av is the weighted average ionic radius of a rare earth or alkaline earth metal. An alkaline electrolysis stack includes the electrode, as well as a method for the electrolysis of water in alkaline conditions using the alkaline electrolysis stack.
Resumen de: WO2025169081A1
PRODUCTION OF HYDROGEN USING METHANOL The present disclosure relates generally to processes for producing hydrogen. In particular, the disclosure relates to a process comprising: providing a first feed stream comprising H2 and CO2; contacting the first feed stream with a hydrogenation catalyst (e.g., in a hydrogenation reaction zone) to hydrogenate at least a portion of the CO2 to form a first product stream comprising methanol; storing at least a portion of the methanol of the first product stream; providing a second feed stream comprising at least a portion of the stored methanol; in a methanol dehydrogenation reaction zone, dehydrogenating at least a portion of the methanol of the second feed stream to form a second product stream comprising H2 and CO2; providing a third feed stream comprising at least a portion of H2 of the second product stream; in a hydrogen reaction zone, reacting hydrogen of the third feed stream with one or more co-reactants to provide a third product stream comprising one or more products including reacted hydrogen atoms from hydrogen of the third feed stream.
Resumen de: US2025257487A1
A method of producing hydrogen and/or bromine by electrolysing hydrogen bromide using a fluoropolymer membrane having a glass transition temperature Tg≥110° C. in an electrolysis of hydrogen bromide, wherein the hydrogen bromide stems from a bromination of a hydrocarbon.
Resumen de: US2025257022A1
The present invention relates to a process for producing methanol (MeOH) and hydrogen (H2) from methane, comprising the steps: a) providing a gaseous feed stream comprising methane; b) reacting said gaseous feed stream with at least one halogen reactant (X2), under reaction conditions effective to produce an effluent stream comprising methyl halide (MeX), hydrogen halide (HX); c) separating from the effluent stream obtained in step b): (i) a methyl halide (MeX) stream, optionally comprising unreacted methane; and, (ii) a hydrogen halide (HX) stream; d) reacting the methyl halide (MeX) stream separated in step c) with a solid metal hydroxide (MOH(s)) under reaction conditions effective to produce metal halide (MX) and methanol (MeOH); and, e) decomposing by means of electrolysis said hydrogen halide (HX) stream separated in step c) under conditions effective to produce a gaseous hydrogen (H2) stream and a stream comprising halogen reactant (X2).
Resumen de: WO2025168858A1
The present invention relates to a high-efficiency hydrogen electrolyser consisting of a single casing containing four inner cavities having identical cubic capacity which are intercommunicated at the top to share a common gas outlet and which may also be intercommunicated at mid-height to share filler material. At the bottom of each cavity there is a solid bar longitudinally arranged such that the upper bar serves as a cathode and the lower bar serves as an anode, resulting in the optimisation of the electrolysis system by adding acidified water and providing DC power supply.
Resumen de: WO2025166879A1
The present invention belongs to the technical field of OER electrocatalysts. Provided are a method for constructing a nitrogen-doped bimetallic nanofiber membrane electrocatalyst on the basis of an electrostatic spinning method and the use of the nitrogen-doped bimetallic nanofiber membrane electrocatalyst. The electrocatalyst is prepared from a mixed high-molecular polymer of a metal salt, N,N-dimethylformamide and polyacrylonitrile by means of the coordinated and confined pyrolysis transformation of a one-dimensional porous carbon nanomaterial. The method comprises: S1, preparing a FeCo-NCNF precursor solution; S2, transferring the resulting FeCo-NCNF precursor solution into a plastic injector with a stainless steel needle to perform electrostatic spinning, so as to obtain a nanofiber membrane; and S3, subjecting the obtained nanofiber membrane to high-temperature carbonization and phosphorization in sequence, so as to obtain a nitrogen-doped bimetallic nanofiber membrane electrocatalyst. In the present invention, the nitrogen-doped bimetallic nanofiber membrane electrocatalyst prepared by using the method has the advantages of a large specific surface area, a porous structure, a high nitrogen content, a great number of active sites, etc., and therefore the catalytic performance of the electrocatalyst is improved.
Resumen de: US2025257415A1
A hydrogen-rich blast furnace ironmaking system based on mass-energy conversion, comprising a water electrolysis system (2). The water electrolysis system (2) is separately connected to a hydrogen storage tank (3) and an oxygen storage tank (4); a gas outlet of the hydrogen storage tank (3) is connected to a hydrogen compressor (5); an outlet of the hydrogen compressor (5) is connected to a hydrogen buffer tank (6); the hydrogen buffer tank (6) is connected to a hydrogen injection valve group (7); the hydrogen injection valve group (7) is connected to a hydrogen preheating system (8); and the hydrogen preheating system (8) is connected to a tuyere of a blast furnace body (1) or a hydrogen injector at the lower portion of the furnace body.
Nº publicación: US2025257374A1 14/08/2025
Solicitante:
KIVERDI INC [US]
Kiverdi, Inc
Resumen de: US2025257374A1
The invention described herein presents compositions and methods for a multistep biological and chemical process for the capture and conversion of carbon dioxide and/or other forms of inorganic carbon into organic chemicals including biofuels or other useful industrial, chemical, pharmaceutical, or biomass products. One or more process steps utilizes chemoautotrophic microorganisms to fix inorganic carbon into organic compounds through chemosynthesis. An additional feature described are process steps whereby electron donors used for the chemosynthetic fixation of carbon are generated by chemical or electrochemical means, or are produced from inorganic or waste sources. An additional feature described are process steps for recovery of useful chemicals produced by the carbon dioxide capture and conversion process, both from chemosynthetic reaction steps, as well as from non-biological reaction steps.