Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Energía eólica flotante

Resultados 152 resultados
LastUpdate Última actualización 29/06/2025 [07:39:00]
pdfxls
Publicaciones de los últimos 120 días / Applications published in the last 120 days
previousPage Resultados 50 a 75 de 152 nextPage  

OFFSHORE FLOATING WIND TURBINE PLATFORM OF SEMI SUBMERSIBLE TYPE WITH COLUMNS' CROSS-SECTION AREA EXPANDED UP TO WATER SURFACE

NºPublicación:  EP4549304A1 07/05/2025
Solicitante: 
UNIV NAT TAIWAN OCEAN [TW]
National Taiwan Ocean University
EP_4549304_PA

Resumen de: EP4549304A1

An offshore floating wind turbine platform (100, 200, 300, 400, 500) with columns' (110, 210, 310) cross-section expanded up toward water surface is used for a wind turbine (50) to be disposed thereon and floated on the sea. The offshore floating wind turbine platform (100, 200, 300, 400, 500) includes multiple columns (110, 210, 310) and a connection portion (120, 220). At least one of the columns (110, 210, 310) has an expansion section (112, 212, 312, 512). A horizontal cross-sectional area (A10) of the expansion section (112, 212, 312, 512) gradually increases upward. The wind turbine (50) is disposed on one of the columns (110, 210, 310). A design waterline of the offshore floating wind turbine platform (100, 200, 300, 400, 500) is located on the expansion section (112, 212, 312, 512). The connection portion (120, 220) connects the columns (110, 210, 310).

ASSEMBLY, TRANSPORTATION AND INSTALLATION OF FLOATING WIND TURBINES

NºPublicación:  EP4547963A1 07/05/2025
Solicitante: 
SUBSEA 7 NORWAY AS [NO]
Subsea 7 Norway AS
AU_2023296641_PA

Resumen de: AU2023296641A1

A spar-type floating offshore wind turbine assembly (10) is assembled and then supported in a transport configuration with its longitudinal axis substantially horizontal or inclined at a shallow acute angle to the horizontal. The assembly is upended during installation to bring the longitudinal axis to a substantially vertical orientation. In a transport configuration, buoyant upthrust is applied to the assembly by immersion of a spar buoy (14) at a lower end of the assembly and of at least one discrete support buoy (32) that is attached to the spar buoy at a position offset longitudinally from the lower end. A brace (42) acts between the spar buoy and an upper structure of the assembly, that structure comprising a mast that is cantilevered from an upper end of the spar buoy. The brace may be attached to the or each support buoy.

OPERATING A FLOATING WIND TURBINE

NºPublicación:  EP4549728A1 07/05/2025
Solicitante: 
SIEMENS GAMESA RENEWABLE ENERGY AS [DK]
Siemens Gamesa Renewable Energy A/S
EP_4549728_PA

Resumen de: EP4549728A1

A method of operating a floating wind turbine (FWT) is provided. The floating wind turbine (100) comprises a nacelle (105) and a rotor (101) mounted to the nacelle (105), wherein the floating wind turbine (100) is exposed to waves during operation, the waves causing a wave induced motion of the floating wind turbine (100). The floating wind turbine (100) is configured to operate a protective function (30). The method comprises obtaining wave information (17) indicative of the waves to which the floating wind turbine (100) is exposed and modifying the operation of the protective function (30) using the obtained wave information (17) to reduce an influence of the wave induced motion of the floating wind turbine (100) on the protective function (30).

OFFSHORE HYDROCARBON PRODUCTION SYSTEM

NºPublicación:  EP4549696A1 07/05/2025
Solicitante: 
SAIPEM SPA [IT]
Saipem S.p.A
EP_4549696_PA

Resumen de: EP4549696A1

An offshore hydrocarbon production system is provided with:- an offshore floating assembly (6) having a floating unit (12) provided with a renewable power source (13) to generate electric power and a back-up power source (15);- an underwater hydrocarbon production facility (4), which is located on the bed (2) of a body of water (3) and is electrically powered by the renewable power source (13) and/or the back-up power source (15);- a power circuit having a power management device (16) connected to the renewable power source (13), the back-up power source (15) and the underwater hydrocarbon production facility (4); and- a control circuit having a master control unit (21) connected to the power management device (16) and the underwater hydrocarbon production facility (4) for balancing the production of electric power and the demand of electric power.

FLOAT STRUCTURE FOR OFFSHORE WIND POWER GENERATION

NºPublicación:  EP4549307A1 07/05/2025
Solicitante: 
UNIV TOKYO [JP]
CHODAI CO LTD [JP]
WATERFRONT REAL ESTATE CO LTD [JP]
The University of Tokyo,
Chodai Co.,Ltd,
Waterfront Real Estate Co., Ltd
EP_4549307_PA

Resumen de: EP4549307A1

A floating structure (5) for offshore wind power generation comprises a floating base (10) where a windmill tower (1) is disposed in a standing manner and that is divided into a plurality of air chambers (11); and an air amount adjustment unit (20) that adjusts air amounts in the air chambers (11) that oppose each other with a center of the floating base (10) therebetween. Each of the air chambers (11) includes an open bottom portion and a soft film body (16) in a slackened state that partitions an inside of the air chamber (11) into an air layer (17) and a water layer (18). Therefore, the floating structure (5) is one whose installation location is not limited, that provides excellent stability, and that is also suitable for use in extra-large-scale wind power generation of 20 MW or greater.

TARGET PRETENSION OF MOORING LINES

NºPublicación:  NO20231190A1 05/05/2025
Solicitante: 
KONGSBERG MARITIME AS [NO]
Kongsberg Maritime AS
NO_20231190_PA

Resumen de: WO2025095785A1

A computer-implemented method of achieving a target pretension in one or more mooring lines of a physical floating offshore unit, the method comprising: measuring a tension in an installation line configured to install the physical floating offshore unit, measuring a line length pull in/out of the installation line; generating a model comprising a digital representation of the physical floating offshore unit's physical properties and/or physical behaviours, wherein the physical floating offshore unit comprises one or more mooring lines and wherein the model is configured to model the one or more mooring lines, the model further comprising a digital representation of physical properties and/or physical behaviours of an installation vessel that is configured to install the physical floating offshore unit, wherein generating the model comprises selecting a base design for the model from a set of base designs based on the measured tension and measured line length pull in/out and modelling the physical floating offshore unit's physical properties and/or physical behaviours based on initial data, wherein the initial data is to be updated based on as-built and as- installed data comprising (i) operations data specific to the physical floating offshore unit and the mooring lines and (ii) marine execution data, and estimating, by the model, based on the as-built and as-installed data, a predicted pretension in the one or more physical mooring lines such that vessel disconnection from

Flywheel energy storage tension leg type fan foundation capable of improving stability

NºPublicación:  CN222823344U 02/05/2025
Solicitante: 
POWERCHINA HUADONG ENGINEERING CORPORATION LTD
\u4E2D\u56FD\u7535\u5EFA\u96C6\u56E2\u534E\u4E1C\u52D8\u6D4B\u8BBE\u8BA1\u7814\u7A76\u9662\u6709\u9650\u516C\u53F8
CN_222823344_U

Resumen de: CN222823344U

The utility model discloses a flywheel energy storage tension leg type fan foundation capable of improving stability, the fan foundation comprises a floating body structure, a flywheel energy storage system and a mooring device, the floating body structure is arranged below a wind turbine generator, and the floating body structure acts as a traditional tension leg structure and is directly connected with the mooring device. The flywheel energy storage system is arranged in the floating body structure, and through mutual conversion of electric energy and flywheel kinetic energy, whole-course peak regulation of the generated power of the floating type draught fan is achieved. Meanwhile, the flywheels rotating at a high speed have the gyroscopic effect, the output torque generated by rotation of the flywheels can be used for resisting the horizontal load action of wind, waves, flow and the like, and swing of the floating fan is reduced. And therefore, the influence of the wake effect on the power generation efficiency of the floating fan can be reduced, and the influence of swinging on the structural stability of the fan can be avoided.

SUBMERSIBLE BOX-WINGED VEHICLE SYSTEMS AND METHODS FOR GENERATING HYDROELECTRIC ENERGY

NºPublicación:  US2025137431A1 01/05/2025
Solicitante: 
EMBRAER S A [BR]
EMBRAER S.A
US_2025137431_PA

Resumen de: US2025137431A1

Submersible box-winged vehicle systems generate hydroelectric energy using naturally occurring tidal flows and/or water currents in a body of water. The vehicle systems include a submersible hull, an upright dorsal fin extending from an aft portion of the submersible hull, port and starboard wing assemblies each having respective proximal ends joined to a forward region of the hull an and an upper region of the dorsal fin so as to establish a box wing configuration, and electrical power generation units attached to the port and starboard wings, wherein each of the electrical power generation units include a generator and a marine propeller operatively connected to the generator so as to cause the generator to generate electrical energy in response to the marine propeller turning. The vehicle system when submerged in a body of water thereby allows tidal flows and/or currents associated with the body of water to responsively turn the marine propeller of each of the electrical power units thereby generating electricity by the generator operably associated therewith

DRILLED ANCHOR PILE

NºPublicación:  US2025136249A1 01/05/2025
Solicitante: 
REFLEX MARINE LTD [GB]
REFLEX MARINE LTD
US_2025136249_PA

Resumen de: US2025136249A1

The present invention relates to an anchoring system (1) comprising an anchor pile (2) configured to be embedded in a borehole (30) drilled in the seabed. The anchor pile (2) comprises an elongate main body (3) having a longitudinal axis (L) and comprising an upper end (4) and a lower end (5). The cross section of the elongate main body (3) increases along a portion of the longitudinal axis (L) in the direction from the upper end (4) to the lower end (5) defining at least one bearing surface (7a, 7b) such that in use an annular gap (32) for receiving locking media is defined between the at least one bearing surface (7a, 7b) and the adjacent portions of the borehole (30). The anchor pile (2) is locked in position within the borehole (30) on receipt of locking media within the annular gap (32) and abutment of the loose material with the bearing surface (7a, 7b).

METHOD FOR STORING AT LEAST ONE PIPE OF A STATIONARY OFFSHORE DEVICE AND STATIONARY OFFSHORE DEVICE

NºPublicación:  US2025136252A1 01/05/2025
Solicitante: 
SIEMENS GAMESA RENEWABLE ENERGY AS [DK]
Siemens Gamesa Renewable Energy A/S
US_2025136252_PA

Resumen de: US2025136252A1

A method for storing at least one pipe of a stationary offshore device is provided, particularly being a wind turbine, by bringing the at least one pipe from a functional state into a storing state, wherein the method comprises the following steps: dismounting the at least one pipe being in the functional state in which it constitutes a component of a conveying arrangement for conveying a fluid through the at least one pipe; and bringing the at least one pipe into the storing state in which it is removably held by at least one suspension device such that the at least one pipe is suspended from a platform of the offshore device.

OFFSHORE FLOATING POWER GENERATION PLATFORM

NºPublicación:  US2025136254A1 01/05/2025
Solicitante: 
MIGHTY WAVES ENERGY LLC [US]
MIGHTY WAVES ENERGY, LLC
US_2025136254_PA

Resumen de: US2025136254A1

A floating power generation platform includes a water plane platform including a plurality of buoyant columns, and at least one central structure extending above the water plane platform and configured to support at least one power generation system. At least one buoyant column of the plurality of buoyant columns is rotatable about a longitudinal axis of the at least one central structure between an unrotated position and a rotated position to move the floating power generation platform between a transportation configuration and a deployed configuration.

SUBMERSIBLE BOX-WINGED VEHICLE SYSTEMS AND METHODS FOR GENERATING HYDROELECTRIC ENERGY

NºPublicación:  WO2025085986A1 01/05/2025
Solicitante: 
EMBRAER S A [BR]
EMBRAER S.A
WO_2025085986_PA

Resumen de: WO2025085986A1

Submersible box-winged vehicle systems generate hydroelectric energy using naturally occurring tidal flows and/or water currents in a body of water The vehicle systems include a submersible hull, an upright dorsal fin extending from an aft portion of the submersible hull, port and starboard wing assemblies each having respective proximal ends joined to a forward region of the hull an and an upper region of the dorsal fin so as to establish a box wing configuration, and electrical power generation units attached to the port and starboard wings, wherein each of the electrical power generation units include a generator and a marine propeller operatively connected to the generator so as to cause the generator to generate electrical energy in response to the marine propeller turning. The vehicle system when submerged in a body of water thereby allows tidal flows and/or water currents associated with the body of water to responsively turn the marine propeller of each of the electrical power units thereby generating electricity by the generator operably associated therewith

OFFSHORE FLOATING WIND TURBINE PLATFORM OF SEMI SUBMERSIBLE TYPE WITH COLUMNS’ CROSS-SECTION AREA EXPANDED UP TO WATER SURFACE

NºPublicación:  US2025137439A1 01/05/2025
Solicitante: 
KEHR YOUNG ZEHR [TW]
CHANG GWO ANG [TW]
NATIONAL TAIWAN OCEAN UNIV [TW]
Kehr Young-Zehr,
Chang Gwo-Ang,
National Taiwan Ocean University
US_2025137439_PA

Resumen de: US2025137439A1

An offshore floating wind turbine platform with columns' cross-section expanded up toward water surface is used for a wind turbine to be disposed thereon and floated on the sea. The offshore floating wind turbine platform includes multiple columns and a connection portion. At least one of the columns has an expansion section. A horizontal cross-sectional area of the expansion section gradually increases upward. The wind turbine is disposed on one of the columns. A design waterline of the offshore floating wind turbine platform is located on the expansion section. The connection portion connects the columns.

MARINE PLATFORM FOR PRODUCING, STORING, AND TRANSFERRING MARINE GREEN HYDROGEN

NºPublicación:  WO2025089434A2 01/05/2025
Solicitante: 
KOREA INSTITUTE OF OCEAN SCIENCE & TECH [KR]
\uD55C\uAD6D\uD574\uC591\uACFC\uD559\uAE30\uC220\uC6D0
WO_2025089434_PA

Resumen de: WO2025089434A2

The present invention relates to an apparatus and method for producing, storing, and transferring hydrogen. According to the present invention, in order to address the problems of conventional systems and methods for producing, storing, and transferring marine green hydrogen, which are configured with a fixed structure in a small-scale offshore wind power generator on a coast or in a shallow sea area with a shallow depth of water, and thus, have low efficiency due to the difficulty in mass production of hydrogen, and a large storage space is occupied when the produced hydrogen is converted into a compressed gas form, and when the produced hydrogen is converted into ammonia, additional energy is required to extract the hydrogen again and there is a risk of environmental pollution and casualty in the event of an outflow accident, provided is a marine platform for producing, storing, and transferring marine green hydrogen, which is configured such that marine green hydrogen is produced through a floating marine structure configured to produce marine green hydrogen using electricity produced using renewable energy from the ocean, and simultaneously, the produced marine green hydrogen is stored, transferred, and offloaded through a single offshore platform (FPSO), thereby being possible to easily construct a large-scale production facility capable of producing, storing, and transferring marine green hydrogen without greenhouse gas emission on the basis of eco-friendly energy.

FLOATING FOUNDATION AND METHOD FOR ASSEMBLING FLOATING WIND TURBINE

NºPublicación:  WO2025086750A1 01/05/2025
Solicitante: 
HUANENG CLEAN ENERGY RES INSTITUTE [CN]
\u4E2D\u56FD\u534E\u80FD\u96C6\u56E2\u6E05\u6D01\u80FD\u6E90\u6280\u672F\u7814\u7A76\u9662\u6709\u9650\u516C\u53F8
WO_2025086750_PA

Resumen de: WO2025086750A1

A floating foundation and a method for assembling a floating wind turbine are provided. The floating foundation comprises a plurality of foundation modules, the foundation modules are assembled and connected, and the foundation modules at least comprise a first foundation module (1) extending in a first direction, a second foundation module (2) extending in a second direction, and a third foundation module (3) extending in a third direction after assembly. The second foundation module (2) and the third foundation module (3) are located on a same plane, and the first foundation module (1) is higher than the plane in which the second foundation module (2) and the third foundation module (3) are located. The first direction, the second direction, and the third direction form a three-dimensional coordinate system. By means of modularizing the floating foundation, the foundation modules are provided as at least three pieces, and during mounting of the floating foundation, the foundation modules can be assembled together, so that rapid assembly of the floating foundation is achieved.

METHOD FOR STORING AT LEAST ONE PIPE OF A STATIONARY OFFSHORE DEVICE AND STATIONARY OFFSHORE DEVICE

NºPublicación:  EP4545784A1 30/04/2025
Solicitante: 
SIEMENS GAMESA RENEWABLE ENERGY AS [DK]
Siemens Gamesa Renewable Energy A/S
EP_4545784_PA

Resumen de: EP4545784A1

Method for storing at least one pipe (13) of a stationary offshore device (1), particularly being a wind turbine (2), by bringing the at least one pipe (13) from a functional state into a storing state, wherein the method comprises the following steps:- dismounting the at least one pipe (13) being in the functional state in which it constitutes a component of a conveying arrangement (9) for conveying a fluid through the at least one pipe (13),- bringing the at least one pipe (13) into the storing state in which it is removably held by at least one suspension device (16) such that the at least one pipe (13) is suspended from a platform (7) of the offshore device (1).

A METHOD FOR CONTROLLING TRANSFER OF A SUSPENDED LOAD BETWEEN AN OFFSHORE WIND TURBINE AND A FLOATING VESSEL

NºPublicación:  EP4544179A1 30/04/2025
Solicitante: 
VESTAS WIND SYS AS [DK]
VESTAS WIND SYSTEMS A/S
WO_2023246993_PA

Resumen de: WO2023246993A1

A method and a system (1) for controlling transfer of a suspended load (2) between an offshore wind turbine (3) and a floating vessel (4) are disclosed. Movements, relative to the floating vessel (4), of a load (2) suspended in a hoisting mechanism (6, 15) and/or of a hooking part (9) of the hoisting mechanism (6, 15), are detected. A position and/or inclination of a landing platform (8) arranged on the floating vessel (4) is adjusted, based on the detected movements, in order to compensate for relative movements between the floating vessel (4) and the suspended load (2) and/or the hooking part (9), thereby synchronizing movements of the landing platform (4) to movements of the suspended load (2) and/or the hooking part (9), while moving the suspended load (2) and/or the hooking part (9) towards the adjustable landing platform (8).

FLOATING FOUNDATION FOR AN OFFSHORE WIND TURBINE AND METHOD OF CONSTRUCTION

NºPublicación:  EP4543744A1 30/04/2025
Solicitante: 
MARIDEA B V [NL]
Maridea B.V
KR_20250026247_PA

Resumen de: CN119486932A

A floating foundation for an offshore wind turbine, the floating foundation having a tower defining a vertical direction, the floating foundation comprising at least three vertical sections and at least two horizontal sections wherein the vertical sections and the horizontal sections are tubular members, the tubular members are arranged in an alternating manner and connected together by interpenetrating pipe joints, and wherein one of the vertical sections is arranged to receive a tower.

Floating type air-gas unit blade air-heat deicing device

NºPublicación:  CN222810907U 29/04/2025
Solicitante: 
XIAN THERMAL POWER RES INSTITUTE CO LTD
\u897F\u5B89\u70ED\u5DE5\u7814\u7A76\u9662\u6709\u9650\u516C\u53F8
CN_222810907_U

Resumen de: CN222810907U

The utility model discloses a blade gas heat deicing device of a floating type wind-gas unit. The blade gas heat deicing device comprises a temperature sensor, a cabin humidity sensor, an air blower, a heat preservation air blowing pipeline, a blade tip front edge heat insulation plate and a start-stop control system. According to the device, a program for automatically judging the critical icing state of the blade is utilized, and in the early stage of icing of the blade, the air blower device is started to heat the front edge position of the blade, so that the icing condition of the blade is restrained. And the problems of unit performance reduction, high operation and maintenance cost, high construction risk and the like caused by freezing of blades in deep sea areas are effectively relieved.

Opposite-pulling self-balancing multi-unit wind power floating platform

NºPublicación:  CN222793776U 25/04/2025
Solicitante: 
CHONGQING ZHUOYUE QIANGSEN NEW MATERIAL TECH CO LTD
\u91CD\u5E86\u5353\u8D8A\u5F3A\u68EE\u65B0\u6750\u6599\u79D1\u6280\u6709\u9650\u516C\u53F8
CN_222793776_U

Resumen de: CN222793776U

The utility model relates to an opposite-pulling self-balancing multi-unit wind power floating platform which comprises a V-shaped tower column, a rigid frame, a plurality of buoys, a lower balancing stand column and an inhaul cable system, the V-shaped tower column is obliquely arranged on the rigid frame, and the buoys provide buoyancy for the rigid frame; the inhaul cable system comprises upper side inhaul cables pulled between the V-shaped tower column and the rigid frame, lower side inhaul cables pulled between the lower balance stand column and the rigid frame and horizontal inhaul cables pulled between two column bodies of the V-shaped tower column, and the upper side inhaul cables are distributed in groups in the circumferential direction of each stand column of the V-shaped tower column. The lower side inhaul cables are distributed in groups in the circumferential direction of the lower balance stand column, and the upper side inhaul cables and the lower side inhaul cables of the rigid frame correspond to each other and are balanced in stress. The floating foundation has the advantages that the inhaul cables distributed in groups in the circumferential direction enable the absolute value of the bending moment of the V-shaped tower column and the rigid frame to be greatly reduced or even zero through opposite-pulling self-balancing, the steel consumption of the V-shaped tower column can be greatly reduced, the internal force of the floating foundation is reduced, and

TOWABLE OFFSHORE FLOATING STRUCTURE

NºPublicación:  US2025128795A1 24/04/2025
Solicitante: 
KOREA INSTITUTE OF OCEAN SCIENCE & TECH [KR]
Korea Institute of Ocean Science & Technology

Resumen de: US2025128795A1

The present invention includes a plurality of legs arranged in a spaced-apart manner; and a connecting bar connected to each pair of legs; further including a cover member arranged to partially wrap around an outer surface of at least one of the legs, wherein when towing is performed at sea, a flow of seawater is guided to an outer side of the leg through contact with the cover member, suppressing the flow of seawater between each pair of legs and thereby reducing resistance caused by the seawater.

FLOATING COLUMN SPOILER STRUCTURE, FLOATING COLUMN, AND FLOATING WIND TURBINE

NºPublicación:  US2025128796A1 24/04/2025
Solicitante: 
HUANENG CLEAN ENERGY RES INSTITUTE [CN]
HUANENG CLEAN ENERGY RESEARCH INSTITUTE
JP_2025507519_PA

Resumen de: US2025128796A1

A floating column spoiler structure, a floating column and a floating wind turbine are provided. The floating column spoiler structure includes multiple spoiler plates and lifting and unfolding assemblies connecting each of the spoiler plates and a column. Each of the lifting and unfolding assemblies includes a first connecting rod, a second connecting rod, a first gear and a second gear; a first end of the first connecting rod is rotatably connected with a first end of the second connecting rod, and each of the spoiler plates is arranged at the first end of the first connecting rod and the first end of the second connecting rod; a second end of the first connecting rod is rotatably connected with the first gear, and a second end of the second connecting rod is rotatably connected with the second gear.

STRUT APPLICATION STATION FOR A PLANT FOR THE MANUFACTURE OF LARGE FLOATERS, IN PARTICULAR FOR WIND TURBINES

NºPublicación:  WO2025083515A1 24/04/2025
Solicitante: 
CASTELLINI OFF MEC S R L [IT]
CASTELLINI OFFICINE MECCANICHE S.R.L
WO_2025083515_PA

Resumen de: WO2025083515A1

A strut application station (210) is suitable for applying struts (25) to a collar (170) of a large floater (10), in particular for wind turbines. The station comprises a working region (500), support means suitable for supporting the collar (170), constraining means suitable for forcing the collar (170) to rotate in order to obtain a circular shape, and actuating means suitable for rotating the collar (170) about the vertical axis (V). Picking means are also provided for picking up a strut (25) and positioning it close to a predefined target position of the inner side surface of the collar. Lastly, positioning means are provided for positioning the strut in the target position against the inner side surface of the collar, and spot-welding means for performing spot-welding of the strut in the target position of the inner side surface of the collar.

FLOATING TYPE OFFSHORE WIND STRUCTURE HAVING IMPROVED STRUCTURAL STRENGTH AND REDUCED WEIGHT

NºPublicación:  US2025129767A1 24/04/2025
Solicitante: 
KOREA INSTITUTE OF OCEAN SCIENCE & TECH [KR]
FRONT ENERGIES LLC [US]
Korea Institute of Ocean Science & Technology,
Front Energies LLC
GB_2630488_PA

Resumen de: US2025129767A1

A floating type offshore wind structure having improved structural strength and reduced weight, including a floating body having buoyancy in the seat; and a wind power generation unit fixed to the floating body, wherein the floating body includes a plurality of columns disposed at the vertex positions of a triangle, respectively, and a plurality of pontoon units disposed in the form of a triangle, so as to connect the plurality of columns, the wind power generation unit is placed at any one of the plurality of columns, each of the plurality of columns includes a first side in contact with a first pontoon unit which is any one of the plurality of pontoon units, and a second side in contact with a second pontoon unit which is another one of the plurality of pontoon units, and each of the first side and the second side is a planar surface.

FLOATING PLATFORM DEVICE FOR A WIND TURBINE TOWER AND ASSEMBLY METHOD

Nº publicación: US2025129766A1 24/04/2025

Solicitante:

BLUENEWABLES SL [ES]
BLUENEWABLES SL

AU_2022346182_PA

Resumen de: US2025129766A1

The present invention relates to a device for the support and foundation of a wind turbine tower. Said device comprises a main body (1) made at least partially of concrete. It also comprises a transition part (2) attached to the main body (1) and a plurality of installation elements (3) located on the main body. The transition part (2) comprises a housing (4) for installing a wind turbine tower, and each installation element (3) comprises a through hole (5) for installing an anchoring tendon.

traducir