Resumen de: DE102024104793A1
Hydrodynamische Rotorwellengleitlagerung für eine Rotorwelle (2) insbesondere einer Windkraftanlage, umfassend wenigstens ein die Rotorwelle (2) radial oder axial lagerndes Gleitlager (3) umfassend mehrere hydrodynamische Lagersegmente (6, 6a, 6b, 15), wobei die Lagersegmente (6, 6a, 6b, 15) an einer Trägerstruktur (7) angeordnet sind, die aus mehreren zu einer Fachwerkstruktur (8) verbundenen Streben (9) besteht.
Resumen de: DE102024104794A1
Hydrodynamische Rotorwellengleitlagerung für eine Rotorwelle (10) insbesondere einer Windkraftanlage, umfassend ein erstes und ein zweites Radiallager (2, 3) sowie ein Axiallager (12), wobei das erste Radiallager (2) ein erstes Radiallagergehäuse (4) und das zweite Radiallager (3) ein zweites Radiallagergehäuse (5) aufweist, in denen jeweils mehrere Radiallagersegmente (6, 7) vorgesehen sind, und das Axiallager (12) ein separates Axiallagergehäuse (13) mit mehreren darin aufgenommenen Axiallagersegmenten (15) aufweist, wobei das Axiallager (12) zwischen den beiden Radiallagern (2, 3) angeordnet ist und das Axiallagergehäuse (13) aus mehreren separaten Gehäusesegmenten (14, 14a), an denen die Axiallagersegmente (15, 15a) angeordnet sind, besteht, wobei jedes Gehäusesegment (14, 14a) an dem ersten und dem zweiten Radiallagergehäuse (4, 5), diese verbindend, befestigt ist und nach Lösen der Befestigung aus einer Arbeitsstellung, in der das oder die daran vorgesehenen Axiallagersegmente (15, 15a) in einer Arbeitsstellung an der Rotorwelle (10) positioniert sind, in eine Nichtarbeitsstellung, in der die Axiallagersegmente (15, 15a) von der Rotorwelle (10) beanstandet sind, bringbar ist.
Resumen de: DE102024118705A1
Hydrodynamische Rotorwellengleitlagerung für eine Rotorwelle (8) insbesondere einer Windkraftanlage, umfassend wenigstens zwei separate Radiallager (28, 29) jeweils umfassend mehrere Radiallagersegmente (32, 33) sowie ein Axiallager (1) umfassend mehrere Axiallagersegmente (5), die in einem Lagergehäuse gehaltert sind, wobei das Axiallager ein Axiallagergehäuse (2) umfasst, an dem mehrere radiale Öffnungen (4) vorgesehen sind, wobei in jeder Öffnung (4) ein Axiallagersegement (5) eingesetzt ist, das radial einsetzbar und entnehmbar ist.
Resumen de: DE102024104796A1
Hydrodynamische Rotorwellengleitlagerung für eine Rotorwelle (8) insbesondere einer Windkraftanlage, umfassend wenigstens ein Axiallager (1) mit einem Axiallagergehäuse (2) sowie mehreren darin angeordneten Axiallagersegmenten (5), wobei das Axiallagergehäuse (2) an einem Träger (25) befestigt ist, wobei das Axiallagergehäuse (2) einen Gehäusekörper (2a) mit mehreren radialen Öffnungen (4) aufweist, wobei in jede Öffnung (4) ein Axiallagersegment (5) eingesetzt ist, das von radial außen einsetzbar und entnehmbar ist, und dass am Gehäusekörper (2a) zwei seitlich radial abragende Befestigungsflansche (3) vorgesehen sind, die auf vom Träger (25) abragenden Tragschnitten (26) aufgelagert und daran befestigt sind, derart, dass alle Axiallagersegmente (5) von radial außen frei zugänglich sind.
Resumen de: DE102024104801A1
Hydrodynamische Rotorwellengleitlagerung für eine Rotorwelle (2) insbesondere einer Windkraftanlage, umfassend wenigstens zwei separate Radiallager (5, 6) jeweils umfassend mehrere Radiallagersegmente (9, 11) sowie wenigstens ein Axiallager (7) umfassend mehrere Axiallagersegmente (14, 15), die in einem Lagergehäuse gehaltert sind, wobei jedes Radiallager (5, 6) ein separates Radiallagergehäuse (8, 10) sowie das Axiallager (7) ein separates Axiallagergehäuse (13) aufweist, wobei das Axiallager (7) axial zwischen den beiden Radiallagern (5, 6) angeordnet und von diesen axial beabstandet ist.
Resumen de: DE102024200976A1
1. Ein Verfahren zum Überwachen einer Umgebung (7) einer Windenergieanlage (2) umfasst das Empfangen (100) von Bildern und/oder Videosequenzen von einer Kamera (6), das Durchführen einer computerbasierten Objekterkennung (101) zum Identifizieren eines zur Bewirtschaftung der Umgebung (7) dienenden Objekts (8) in den von der Kamera (6) empfangenen Bildern und/oder Videosequenzen und das Ausgeben (104) einer Meldung (8), ob die Windenergieanlage (2) betrieben werden darf, ob die Windenergieanlage (2) nicht betrieben werden darf oder ob eine externe Überprüfung erforderlich ist, in Abhängigkeit von dem identifizierten Objekt.
Resumen de: DE102024104797A1
Hydrodynamische Rotorwellengleitlagerung für eine Rotorwelle (2) insbesondere einer Windkraftanlage, umfassend ein erstes und ein separates zweites Radiallager (8, 9) jeweils umfassend mehrere Radiallagersegmente (11, 14), die in einem Lagergehäuse gehaltert sind, wobei das erste und das zweite Radiallager (8, 9) jeweils ein separates erstes und zweites Radiallagergehäuse (10, 13) aufweist, wobei das erste und das zweite Radiallager (8, 9) axial voneinander beabstandet sind, und dass ein erstes und ein separates zweites Axiallager (17, 21) vorgesehen ist, die mehrere erste und zweite Axiallagersegmente (18, 22) aufweisen, wobei die ersten Axiallagersegmente (18) die Rotorwelle (2) gegen das eine erste Radiallagergehäuse (10) und die zweiten Axiallagersegmente (22) die Rotorwelle (2) in entgegengesetzter Richtung gegen das zweite Radiallagergehäuse (13) abstützen.
Resumen de: AU2023359369A1
A method of installing a cable system (30) including a cable assembly (32a-c) on a wind turbine (10) having a tower (12), a rotor (22), and a central hub (24). A plurality of blades (26a-c) is coupled to the hub (24). The cable assembly (32a-c) includes multiple cables (40a-c, 42a-c, 44a-c). A crane (102) has a hoist line (104, 106) and is attached to one of the cables (44a-c). The crane (102) lifts the cable assembly (32a- c) to the hub (24). The cable (44a-c) is then coupled to the hub (24). The hoist line (104, 106) is attached to another of the cables (40a-c, 42a-c), is moved to one of the blades (26a-c), and the cable (40a-c, 42a-c) is coupled to the one of the plurality of blades (26a-c). Moving the cable (40a-c, 42a-c) may include pulling an end of the second cable (40a-c, 42a-c) to the one of the plurality of blades (26a-c). Pulling the end of the second cable (40a-c, 42a-c) may include moving the first crane (102) toward the one of the plurality of blades (26a-c).
Resumen de: WO2024125867A1
The present invention relates to a wind turbine (1) powering a plant (40) especially a hydrogen production plant, where the wind turbine (1) comprises a generator (10) connected to a wind rotor (5), and where an electrical power system (9) electrically connects the generator (10) to the plant (40), characterized in that, the frequencies of the currents within the electrical power system (9) are not adapted according to a setpoint dictated by a utility power grid. The present invention further relates to the method to operate the wind turbine (1).
Resumen de: WO2024078671A1
According to an aspect of the invention there is provided a reconfigurable mould assembly for the manufacture of wind turbine blades having different geometries. The mould assembly comprises a mould skin extending longitudinally in a spanwise direction and transversely in a chordwise direction. The mould skin defines a mould surface shaped to form a half shell of a wind turbine blade. The mould skin comprises a plurality of spanwise sections for arrangement end to end in a spanwise direction to form the half shell. The plurality of skin sections include one or more inboard skin sections for forming a root end of the half shell, and one or more outboard skin sections for forming a tip end of the half shell. The mould assembly further comprises a main frame comprising a series of independent main frame modules arranged end to end in the spanwise direction. The main frame modules include one or more inboard main frame modules for supporting the one or more inboard skin sections and one or more outboard main frame modules for supporting the one or more outboard skin sections. The mould assembly further comprises an intermediate support structure attached to a reverse side of each mould skin section. The intermediate support structure(s) attached to the inboard skin section(s) are releasably connectable to the inboard main frame module(s). The intermediate support structure(s) attached to the outboard skin section(s) are releasably connectable to the outboard main frame module(s).
Resumen de: CN120019201A
A method of assembling a wind turbine blade includes providing a load-bearing spar structure having one or more positioning features for positioning one or more wind turbine blade segments, the load-bearing spar structure secured to a securing device, the securing device being movable and extendable. The method further includes at least one of moving and extending the fixture to at least one of move and lift the load-bearing spar structure through the assembly line. The method further includes positioning one or more wind turbine blade segments onto one or more positioning features of the load-bearing spar structure when the fixture is at least one of moved and extended through the assembly line. The method further includes securing one or more wind turbine blade segments to the load-bearing spar structure.
Resumen de: EP4603698A1
A method for protecting one or more components of a yaw system of a wind turbine includes monitoring one or more loading signals indicative of a yawing moment of a rotor of the wind turbine. The method also includes evaluating the one or more loading signals indicative of the yawing moment of the rotor. Further, the method includes predicting an optimal start time for the yaw system based on the evaluated one or more loading signals. Moreover, the method includes starting the yaw system at the optimal start time to minimize loading of the yaw system of the wind turbine.
Resumen de: EP4603788A1
An apparatus for measuring a wind power generator air gap is disclosed. The apparatus is capable of measuring a measure (air gap) of a large structure with a diameter exceeding several meters which constitutes a wind power generator and verifying reliability of the air gap before assembly. The apparatus includes a support with a rotating driver therein, a first frame having an inner end fixed on the support, a second frame provided above the first frame at an interval, a spacer provided below the second frame, a turning bearing fixing the first frame and rotating the second frame, n (n is a natural number) dummy magnets provided on an outer end of the first frame, n (n is a natural number) dummy coils provided on an outer end of the second frame, and an air gap measuring means measuring an air gap between the dummy magnets and the dummy coils.
Resumen de: FI20225918A1
The invention relates to a wind turbine (1) comprising a first wind turbine blade (20) arranged to move around a vertical axis (R) and a first wind turbine blade support (40). The first wind turbine blade support (40) extending between the first wind turbine blade (20) and the wind turbine tower (10). The wind turbine (1) further comprises an upper support gap (31) arranged to enable a horizontal movement of the first wind turbine blade support (40) in relative to the wind turbine tower (10), and a potential energy storing device (50) arranged to restrain the horizontal movement. The present further relates to use of a potential energy storing device (50) in a wind turbine for restraining a horizontal movement.
Resumen de: WO2024077396A1
A vertical-axis turbine extending longitudinally along an axis of rotation is disclosed, wherein the turbine has first and second blades disposed around the axis of rotation, the first and second blades having proximal portions and distal portions located relatively close to and away from the axis of rotation respectively, and body portions located between the proximal portions and the distal portions. The turbine also has a rotor assembly coupled to an end of the first and second blades. The proximal portion of the first blade contacts the body portion of the second blade and the proximal portion of the second blade contacts the body portion of the first blade to form a closed volumetric region around the axis of rotation. The shape of the first and second blades may be defined by twisting a sheet of flexible material according to a frame comprising two or more pairs of battens.
Resumen de: EP4603699A1
A lightning protection assembly for a rotor blade (1) of a wind turbine is provided. The lightning protection assembly (100) comprises a carbon structure (110) extending in a longitudinal direction of the rotor blade (1) for strengthening the rotor blade (1), a conductive element (120, 130); and a potential equalization assembly (121, 131) comprising at least respective first and second conductor bonding elements (122, 132) each configured to electrically couple the conductive element (120, 130) to the carbon structure (110). A longitudinal section of the conductive element (120, 130) extends in a longitudinal direction of the blade (1) between the first and second conductor bonding elements (122, 132). The longitudinal section of the conductive element (120, 130) extends in a longitudinal direction along at least a portion of the carbon structure (110). The conductive element (120, 130) is spaced apart from the carbon structure (110) in a surface direction (S1) parallel to a surface of the rotor blade (1) and/or in a thickness direction (S2) perpendicular to the surface of the rotor blade (1).
Resumen de: GB2638182A
Apparatus 1 for generating energy from water waves 2 comprises a buoyant body 3 comprising a first and second body sections 4, 5 and a ballast 7. The ballast is rotationally fixed relative to and first body section, and both together can rotate relative to the second body section in first and second opposed directions. The apparatus further comprises an energy generation system 10 comprising first and second gears 11, 12, first and second flywheels 13, 14 and first and second generators 15, 16. The first gear rotates in the first direction 8 only and the second gear rotates in the second direction only. A first drive path is provided from the ballast to the first generator via the first gear and first flywheel such that relative rotation between the ballast and the second body section in the first direction drives the first generator. A second drive path is provided from the ballast to the second generator via the second gear and second flywheel such that relative rotation between the ballast and the second body section in the second direction drives the second generator. A watercraft comprising a mast rotationally fixed relative to a keel, and both together rotatable relative to a hull may include the apparatus for generating energy from waves. A sail for the watercraft comprises at least one blade.
Resumen de: EP4603696A1
The present disclosure relates to blades (10) for wind turbines (2), to wind turbines (2) and to methods (100) for manufacturing wind turbine blades (10). A wind turbine blade (10) comprises a spar cap (74, 76), one or more electrically insulating polymer layers (81) between the spar cap (74, 76) and an outer surface of the blade (10), and an air termination system (82, 83) arranged at the outer surface of the wind turbine blade (10).
Resumen de: EP4603697A1
The invention relates to a method for repairing a wind turbine rotor blade (110), the wind turbine rotor blade (110) comprising a component (142) made of a fiber reinforced laminate, wherein the component (142) comprises a defect (148), the method comprising the steps of:- providing a repair kit (152) for bridging the defect (148), the repair kit (152) having a first flange piece (154), a second flange piece (156), and a connecting bolt (148), wherein each flange piece (154, 156) has a mounting portion and a connecting portion;- bonding the first flange piece (154) with its mounting portion onto a respective first surface region (164) of the component (142) and the second flange piece (156) with its mounting portion onto a second surface region (166) of the component (142) such that each flange piece (154, 156) is arranged at a predefined distance from the defect (148) and the defect (148) runs between the two flange pieces (154, 156), and- screwing the first flange piece (154) and the second flange piece (156) together at their connecting portions by means of the connecting bolt (148) to bridge the defect (148).
Resumen de: EP4603815A1
It is described a method of temperature estimation of an electrical generator (101) including plural generator components comprising a rotor (102), and a stator (105) having teeth (106) and windings (107), the method comprising:using a thermal model (120) for the generator (101) comprising plural elementary thermal modelling elements (121a,b,c,d,e; 322) partially connected to each other in a network for modelling heat conduction, wherein at least one elementary thermal modelling element (322) comprises: a first and a second error compensation thermal resistance (R_m1, R_m2) connected in series between a star point (324) and a heat providing and/or absorbing system (326); the method comprising: estimating plural values (113) of temperature for the plural elementary modelling elements by feeding plural values (115) of the operational parameters into the thermal model (120) and modelling heat transfers between and within the plural generator components or portions according to connectivities and thermal resistances within the network and within the elementary thermal modelling elements.
Resumen de: EP4603700A1
In a first aspect, a suspended platform system for post-moulding operations on a wind turbine blade is provided. The system comprises a suspended working platform to hold a user, a driving system for moving the working platform, and a control unit to prevent a distance between the working platform and a surface of the wind turbine blade from being less than a safety distance threshold. In a further aspect, a method is provided. In yet a further aspect, a wind turbine blade post-moulding operation system is provided.
Resumen de: EP4603701A1
Es wird eine Windenergieanlage (100) mit mindestens einer zu kühlenden Komponente (120), einer Gondel (200) mit einer Gondelverkleidung (210), welche mindestens ein Gondel-Seitenelement (211), mindestens ein Gondel-Dachelement (212) und/oder mindestens ein Gondel-Bodenelement (213) aufweist. Die Windenergieanlage (100) weist ferner ein Kühlsystem (300) zum Kühlen der zu kühlenden Komponente (210) mit mindestens einem Wärmetauscher (301) mit einer Wärmetauscherfläche (310) auf, welche Teil der Gondelverkleidung (210) ist.
Resumen de: WO2024079432A1
The invention provides a turbine (10). A duct (16) provides an elongate circular internal passage (48) having an open upstream end forming an intake (44) and an open downstream end forming an exhaust (46). A turbine rotor (12) is rotatably mounted in and coaxially with the internal passage and has at least one rotor blade (20) which extends helically along the internal passage so that airflow through the internal passage from the intake to the exhaust impinges on the rotor blade and drives the turbine rotor to turn. The duct (16) provides at least one intermediate inlet (52, 54) disposed between the intake and the exhaust and part way along the rotor blade.
Resumen de: WO2024132342A1
A method of operating a wind turbine is provided. The wind turbine (100) comprises a wind turbine rotor (101) and an electrical power system (103) including a doubly-fed induction generator (104) mechanically coupled to the wind turbine rotor, wherein the electrical power system is configured to exchange electrical power with a power grid (112). The method comprises obtaining a grid requirement for the wind turbine (100) to exchange reactive power with the power grid (112), wherein providing the reactive power in accordance with the grid requirement by the electrical power system (103) requires the electrical power system to consume an active power amount. The method further comprises providing, by the electrical power system (103), the reactive power in accordance with the grid requirement to the power grid (112) while consuming the active power amount. The providing of the reactive power includes supplying the electrical power system (103) with the required active power amount, wherein the wind turbine (100) is operated such that the electrical power system does not deliver active power to the power grid (112), and operating the generator (104) as a variable-speed rotating condenser to provide at least a part of the reactive power to the power grid (112).
Nº publicación: EP4602265A1 20/08/2025
Solicitante:
SIEMENS GAMESA RENEWABLE ENERGY AS [DK]
Siemens Gamesa Renewable Energy A/S
Resumen de: WO2024125904A1
A retaining mechanism (23) for mounting a tower segment (21) of a wind turbine tower (2) comprising a flange (211) at a bottom surface or at a top surface of the tower segment (21), the flange (211) having a through hole (212); wherein the retaining mechanism (23) comprises a retaining element (232) being at least partially insertable into the through hole (212); and wherein the retaining element (232) has a first position for holding a stud (24) in a fixed position and a second position for releasing the stud (24).