Resumen de: WO2025230473A1
The present disclosure relates broadly to ammonia electrochemical cells. The ammonia electrolysis cell may comprise: a chamber for containing an electrolyte; two electrodes disposed within the chamber; and an anion exchange membrane disposed between the electrodes, wherein each electrode comprises a bifunctional catalyst having ammonia oxidation reaction activity and hydrogen evolution reaction activity, and wherein each electrode is capable of alternating in polarity when subjected to an alternating potential. There is also disclosed herein a method of operating an ammonia electrolysis cell as well as the use of an ammonia electrolysis cell to produce hydrogen from ammonia.
Resumen de: WO2025228738A1
The invention relates to a method for operating at least one electrochemical system (1), for example an electrolysis system for producing hydrogen, wherein software is used during operation of the electrochemical system (1), which software is at least once updated or replaced by subsequent software, and wherein the updated software or the subsequent software is tested and/or validated at least in parts. According to the invention, (a) a virtual operating environment is generated by means of a simulation, which virtual operating environment reproduces an actual operating state using real operating data, (b) the updated software or subsequent software is executed within the virtual operating environment, and (c) the updated software or subsequent software is tested and/or validated on the basis of the actual operating state in parallel with ongoing operation. The invention also relates to a computing unit (4) which is designed to carry out steps of a method according to the invention.
Resumen de: WO2025230786A1
A method of catalytic ammonia decomposition, where the method includes: flowing ammonia into a reactor charged with a supported medium entropy metal alloy (MEA) catalyst including MEA particles supported on a support, the MEA particles including a first principal metal, a second principal metal, and a third principal metal, where each of the principal metals is independently selected without repetition from the group consisting of Co, Cr, Fe, Mn, Ni, Al, Cu, Zn, Ti, Zr, Mo, V, Ru, Rh, Pd, Ag, W, Re, Ir, Pt, Au, Ce, Y, Yb, Sn, Ga, In, and Be; and catalytically decomposing the ammonia into hydrogen and nitrogen over the supported MEA catalyst in the reactor at a reaction temperature between 200 °C and 900 °C.
Resumen de: WO2025230800A1
The electrolysis device includes a plurality of plates that have a plurality of sets of aligned fluid openings. At least one of the sets of aligned fluid openings is configured for conveying high pressure hydrogen gas. At least one gasket, which has an annular shape and is made of an elastomeric material, surrounds at least one of the sets of aligned fluid openings to establish a fluid-tight seal between at least two of the plurality of plates. The at least one gasket has a generally constant cross-sectional shape around a central axis, the cross-sectional shape having a sealing surface that includes a pair of peaks that are spaced radially apart from one another and that includes a pair of elevated plateaus on opposite radial sides of the pair of peaks.
Resumen de: WO2025229398A1
There is described a hydrogen production system comprising: a gasification sub-system to produce a syngas stream from a biomass and/or refuse derived fuel feed stream; and a steam methane reformer (SMR) sub-system to produce an SMR syngas stream from a hydrocarbon feed, and to produce a low carbon hydrogen final product by integrating the syngas stream from the gasification sub-system and the SMR syngas stream.
Resumen de: JP2025166373A
【課題】水の電気分解を利用した二酸化炭素の回収方法であって、回収を確実に見込める方法を提供すること。【解決手段】本発明の回収方法は、水を電気分解した電解装置の陰極室32Bから取り出したアルカリ性の陰極側電解液35Bを、二酸化炭素を含む気体で曝気する曝気工程と、曝気した陰極側電解液35Bを酸性にする酸性化工程と、酸性にした陰極側電解液35Bを加熱して、気体で放出された二酸化炭素を回収する二酸化炭素回収工程とを有する。各工程において陰極側電解液35Bに対する二酸化炭素の溶解と放出を制御することで、二酸化炭素を効率的に回収することができる。【選択図】図1
Resumen de: JP2025166415A
【課題】浄水器の劣化をおさえながら、水電解用の水を冷却および浄化し、十分な量を水電解セルに供給すること。【解決手段】水電解装置1は、水電解反応により水素および酸素を生成する水電解セルと、前記水電解セルで使用された水を貯蔵する水タンクと、前記水タンクに接続され前記水タンクから供給された水を冷却する熱交換器と、前記熱交換器に接続され前記熱交換器で冷却された水を浄化する浄水器と、前記水タンクから供給された水が前記熱交換器および前記浄水器を介して前記水電解セルに流れる第1流路92と、前記水タンクから供給された水が前記熱交換器および前記浄水器を介さずに直接前記水電解セルに流れる第2流路93と、前記水電解セルから前記水タンクに水が流れる第3流路と、を備える。【選択図】図1
Resumen de: JP2025166457A
【課題】水の電気分解において、反応が進行する場所は電極表面の気体と液体の界面-すなわち固体、気体、液体の三相の界面の極めて限られた領域で反応が進む。つまり反応が進行する場所は電極表面の気体と液体の界面の狭い範囲に限定される。この狭い反応領域の一点に水の二分子もしくは水酸基の4分子が同時に接触しなければ水素分子もしくは酸素分子は発生せず極めて限定された反応機構となる。【解決手段】負極と正極と中間電極を有し、負極と正極との間に中間電極を配した少なくとも2組の電極群において、一方の電極群の負極と他方の電極群の正極との間に中間電極が配された水電解装置とすることにより反応面が線から面に広がり効率の良い水電解が可能となる。【選択図】図1A
Resumen de: US2025236972A1
Electrolyzer for production of hydrogen gas and comprising a stack of bipolar electrodes sandwiching ion-transporting membranes between each two of the bipolar electrodes. Each bipolar electrode comprises two metal plates welded together back-to-back forming a coolant compartment in between and having a respective anode surface and an opposite cathode surface, each of which is abutting one of the membranes. The plates are embossed with a major vertical channel and minor channels in a herringbone pattern for transport of oxygen and hydrogen gases. The embossed herringbone pattern is provided on both sides of the metal plates so as to also provide coolant channels in a herringbone pattern inside the coolant compartment.
Resumen de: WO2025230390A1
A ruthenium-nickel foam catalyst composite, a preparation method therefor, and a hydrogen extraction system (10) using same are disclosed. Specifically, provided is the method for preparing a catalyst composite used for ammonia decomposition, comprising the steps of: (a) making a porous support, which is in the form of a three-dimensional structure having pores and includes a first metal, come into contact with an acidic aqueous solution so as to pretreat the porous support; (b) preparing a second metal precursor aqueous solution comprising water and a second metal precursor that includes a second metal; and (c) using the pretreated porous support and the second metal precursor aqueous solution so as to support a catalyst including the second metal on a part or all of the surface of the porous support, thereby preparing a catalyst composite. The present invention provides a low-loading noble metal catalyst by maximizing the utilization of supported noble metals through selective adsorption of Ru metal.
Resumen de: DE102024112692A1
Eine Plattenanordnung (1) eines Stapels elektrochemischer Zellen (2) umfasst ein zumindest teilweise als 3D-Druck-Element ausgebildetes Plattenelement (3), in welchem mehrere Schichten (6, 7, 8) parallel zueinander angeordnet sind, die jeweils durchbrochene, zur Durchleitung eines Fluids geeignete Strukturen aufweisen, wobei die Feinheit der Durchbrechungen (17) von Schicht (6, 7, 8) zu Schicht (6, 7, 8) variiert, und wobei ein Temperatursensor (19), der an ein Kabel (20) angeschlossen ist, welches durch mehrere der genannten Schichten (6, 7, 8) verläuft, an diejenige Schicht (8) grenzt, welche die feinsten Durchbrechungen (17) aufweist.
Resumen de: AU2024244811A1
Provided is a configuration capable of improving the operation rate of a hydrogen production device for producing hydrogen using power supplied from multiple power sources using different renewable energies. A power system 1 according to one embodiment of the present disclosure comprises: a hydrogen production device 41 that produces hydrogen using power supplied from different types of renewable energy generators 21, 31; and an information processing device 71 that causes power to be supplied to the hydrogen production device 41 from a renewable energy generator, the output of which is reduced, from among the renewable energy generators 21, 31.
Resumen de: WO2025228586A1
A porous transport layer, PTL, (200) for a water electrolyzer (100). The porous transport layer comprises a porous layer (210), where the porous layer (210) is a porous structure comprising irregular pores (212) and solid sections (213). At least a first surface (211) of the porous layer (210) is formed by a first plurality of solid sections (213). At least some of the solid sections (213) in the first plurality have at least one surface that is substantially flat and arranged facing outwards from the porous layer such that it forms part of the first surface (211).
Resumen de: EP4644122A1
A membrane having excellent radical durability and low gas permeability, a membrane electrode assembly including the membrane, and a water electrolysis apparatus are provided. A membrane having a laminated structure including a layer B1, a layer A, and a layer B2 in this order, in which the layer A contains a hydrocarbon-based polymer (a) which has an ionic group and may be fluorine-substituted, and each of the layers B1 and B2 contains a perfluoro-carbon polymer (b) having an ionic group.
Resumen de: EP4644588A1
The present invention provides an improved composite diaphragm for hydrogen production by alkaline electrolysis water. A thermally induced phase separation method is used for preparation, the process is simple, large-scale and large-area stable production can be realized, and the prepared composite diaphragm has high hydrophilicity and high mechanical strength, can tolerate high temperature (90-160°C) and high-concentration alkali liqid, and is an excellent diaphragm for an alkaline electrolytic cell for water electrolysis.
Resumen de: EP4644587A1
The present invention provides an improved organic-inorganic composite diaphragm for hydrogen production by alkaline water electrolysis, and a preparation method therefor. An organic polymer resistant to high temperature and concentrated alkali is selected; a polar polymer and a soluble metal salt are introduced into a diaphragm-forming solution; an aqueous alcohol solution containing ions capable of precipitating the metal salt in the diaphragm-forming solution is used as a diaphragm-forming coagulation bath; and the diaphragm and inorganic particles are generated simultaneously to prepare an organic-inorganic composite diaphragm having the inorganic particles uniformly distributed on the surface and the interior of the diaphragm. The organic-inorganic composite diaphragm has few defects, high stability and strong controllability, is used as a diaphragm for hydrogen production by alkaline water electrolysis, and demonstrates a lower electrolysis voltage and very high electrolysis efficiency.
Resumen de: EP4644586A1
The present disclosure discloses an integral catalyst with porous core-shell structure and a preparation method and an application thereof. With a transition metal as active material, a stable bifunctional catalyst capable of performing hydrogen evolution and biomass oxidation at the same time is prepared by epitaxial growth and air calcination; and, the process efficiencies of internal diffusion, external diffusion, adsorption, reaction and desorption of reactive molecules and product molecules and so on can be increased by the porous structure of the catalyst, realizing increase of the catalyst activity.
Resumen de: AU2024291100A1
The invention relates to an energy supply system (20) for coupling to a wind turbine (30) used in island mode, wherein the wind turbine (30) is configured to operate an electrolysis system (11) for producing green hydrogen using wind energy, wherein the energy supply system (20) has a solar energy source (21), comprising a photovoltaic module (22) and/or a solar thermal collector (23), which is configured to supply the electrolysis system (21), in particular an enclosure (12) and water-conducting lines of electrolysis units of the electrolysis system (11), with thermal energy in the event of the absence of wind energy. The invention also relates to a corresponding method for supplying solar energy to a wind turbine (30) used in island mode.
Resumen de: AU2024307301A1
A method and arrangement of performing electrolysis by an electrolyzer includes an operational mode and a partial operational mode. During the operational mode operational power from a main power source (202) to a first (808) and second set of stacks (806). In response to detecting a power insufficient for the first and the second set of stacks (806) to perform electrolysis without impurities, the electrolyzer is set to a partial operational mode, wherein the first set of stacks (808) perform electrolysis without impurities and the second set of stacks (806) do not perform electrolysis.
Resumen de: WO2024205436A1
The object of the invention is a plasma-catalytic system for the decomposition of ammonia in gliding discharge plasma characterized in that it contains a gliding discharge reactor containing at least one catalytic bed (5) containing a metallic catalyst selected from a group including Ni and Co in an amount in a range of 2-20% by weight deposited on the Al2O3 substrate. Another object of the invention is the plasma-catalytic system of the invention for use in the decomposition of ammonia, characterized in that the mixture to be decomposed contains at least 60% ammonia and at least 40% another component selected from nitrogen and hydrogen with a flow rate in a range of 160-200 Ndm3/h.
Resumen de: WO2024141564A1
The present disclosure relates to a system for producing hydrogen from feedstock and a method thereof. The system comprises a first chamber adapted to thermally decompose the feedstock, and a second chamber adapted to receive a first portion of the gaseous stream and to receive a first portion of the solids stream to form a reactants combination. The second chamber adapted to partially react the reactants combination with steam to produce a product gas. The system further comprises a third chamber adapted to receive a second portion of the gaseous stream and adapted to receive a second portion of the solids stream to form a combustibles combination. The third chamber adapted to at least partially combust the combustibles combination to produce process heat for the first chamber and/or the second chamber. The system further comprises a controller adapted to adjust the composition of the reactants combination and of the combustibles combination.
Resumen de: CN120390829A
The present invention provides a small high-voltage electrolyzer for generating hydrogen and oxygen, the small high-voltage electrolyzer comprising: one or more cells each comprising a plurality of high-voltage electrolysis cells wherein the electrolysis cells of the respective cells are electrically connected in series; and a central electrolyte header functionally connected to each of the electrolytic cells for supplying a liquid electrolyte to the cell; a central hydrogen header connected to each of the electrolytic cells for discharging the generated hydrogen from the cells; a central oxygen header connected to each of the electrolytic cells for discharging the generated oxygen from the cells; the direct-current power supply is used for supplying power to each unit of the electrolytic bath which is connected in series; wherein the cells of the electrolytic cells connected in series are electrically connected in parallel.
Resumen de: KR20250157901A
본 발명은 담지체를 준비하는 단계; 담지체에 불소를 도핑하는 단계; 및 불소가 도핑된 담지체의 표면에 금속 입자 촉매를 형성하는 단계;를 포함하는 불소가 도핑된 담지체를 이용한 수전해용 촉매의 제조 방법과 이로부터 제조된 수전해용 촉매에 관한 것이다.
Resumen de: JP2025165571A
【課題】熱交換器を用いた水の温度調整での調整精度を高めることが可能な水素発生装置を提供し、水素発生装置での水素ガスの製造効率を向上させる。【解決手段】水を電気分解して水素を発生させる電解装置と、電解装置を通じて水が循環する水循環経路と、水循環経路でイオンを除去するイオン交換器と、水循環経路の水温を調節する水温調節装置とを有し、水循環経路がイオン交換器通過と電解装置との間で分岐した後に合流し、水温調節装置は、電解装置が排出する水よりも低温の水をイオン交換器に供給し、該水よりも高温の水を電解装置に供給すべく、分岐点から合流点までの間に熱交換器を有し、合流点で合流する水に温度差を設けるよう構成され、合流する水の割合を調整して電解装置に供給する水の温度を調整する温度調整弁を有している水素発生装置を提供する。【選択図】 図3
Nº publicación: JP2025165583A 05/11/2025
Solicitante:
株式会社デンソー
Resumen de: JP2025165583A
【課題】内側領域の温度上昇を抑制することができる、電解装置を提供すること。【解決手段】電解質層と、第1電極21と、第2電極と、第1流路と、を備えた電解セルと、第2流路と、第1電極に当接すると共に第1流路を形成する流路形成導体5と、を有し、流路形成導体5を介して第1電極21と第2電極との間に電圧を印加することで、反応流体Fを電気分解して、水素を生成するよう構成された、電解装置1。第1面の法線方向Zから見て、第1電極21を、第1電極21の外周端辺を含む外周領域A1と、外周領域A1の内側の内側領域A2とに分け、内側領域A2の外形は、第1電極21の外形の相似形であって、内側領域A2の面積を第1電極21の面積の半分とし、電解セルにおける電気分解反応に伴う単位面積当たりの吸熱量を吸熱密度としたとき、外周領域A1における吸熱密度の平均値よりも、内側領域A2における吸熱密度の平均値の方が大きい。【選択図】図2