Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Carbon nanomaterials

Resultados 137 results.
LastUpdate Updated on 31/08/2024 [08:14:00]
pdfxls
Solicitudes publicadas en los últimos 60 días (excluida automoción) / Applications published in the last 60 days (Automotion publications excluded)
Results 1 to 25 of 137 nextPage  

一种澳洲坚果壳抗菌剂的制备方法及应用

Publication No.:  CN118561268A 30/08/2024
Applicant: 
昆明理工大学
CN_118561268_A

Absstract of: CN118561268A

本发明涉及一种澳洲坚果壳抗菌剂的制备方法及应用,所述澳洲坚果壳抗菌剂的制备方法包括以下步骤:步骤1)选择材料为澳洲坚果壳;步骤2)粉碎后按照一定比例分散水中,形成溶液A;步骤3)将溶液A置于反应釜中进行反应;步骤4)将步骤3)反应后的产物进行过滤,收集滤液为溶液B,所述的溶液B即为澳洲坚果壳抗菌剂。本发明采用超声处理法和水热反应法以及分离除杂法等简易方法制备了抗菌性能十分优异的澳洲坚果壳抗菌剂。本工作将为以澳洲坚果果壳为主体原料制备性能优异的新型抑菌材料提供启示。本发明方法制备的澳洲坚果壳抗菌剂抗大肠杆菌或金黄色葡萄球菌以及污水处理过程中的一些霉菌和其他杂菌等效果显著,具有广谱抗菌作用。

一种双功能辅助制备晶态碳纳米片及其制备方法与应用

Publication No.:  CN118561266A 30/08/2024
Applicant: 
太原科技大学
CN_118561266_A

Absstract of: CN118561266A

本申请公开了一种双功能辅助制备晶态碳纳米片及其制备方法与应用,属于石墨碳材料技术领域,包括以下步骤:S1.将水溶性有机物、过渡金属盐和氧化石墨烯按比例放入到盛有去离子水的容器中,混合均匀后放置到微波反应器中,反应结束后,将反应物冷冻干燥,随后在管式定碳炉中碳化,升温到700~850℃,碳化保温后,自然冷却;S2.将碳化后的粉末经盐酸和去离子水反复洗涤去除金属元素后,干燥,即得所述晶态碳纳米片。本申请采用上述的一种双功能辅助制备晶态碳纳米片及其制备方法与应用,该方法操作简单、能耗低、设备简单且易于放大,经该方法制得的晶态碳纳米片同时具有石墨微晶和缺陷,能够提供较短的离子扩散路径和快速的电子传输通道。

一种适用于电学器件的二维材料的转移方法

Publication No.:  CN118561274A 30/08/2024
Applicant: 
北京量子信息科学研究院清华大学
CN_118561274_A

Absstract of: CN118561274A

本申请公开一种适用于制备电学器件的二维材料转移方法,包括:采用聚乙烯醇薄膜拾取氮化硼,再拾取二维材料层,得聚乙烯醇薄膜‑氮化硼‑二维材料结构,翻转并转移到空白硅片上,得二维材料‑氮化硼‑聚乙烯醇薄膜‑硅片顺序排列结构;采用聚碳酸酯薄膜拾取翻转后的二维材料‑氮化硼‑聚乙烯醇薄膜‑硅片排列结构,得到聚碳酸酯薄膜‑二维材料‑氮化硼‑聚乙烯醇薄膜‑硅片排列结构,放入超纯水中浸泡,除去聚乙烯醇薄膜层和硅片,得聚碳酸酯薄膜‑二维材料‑氮化硼,并定点移至目标衬底后,去除聚碳酸酯薄膜,实现二维材料在氮化硼上面,适用于电极制备。该转移方法可减少气泡、应力和污染,同时具有表面干净、均匀完整、聚合物残留少的特点。

仿生层级交叉结构的石墨烯/树脂复合材料及其制备方法

Publication No.:  CN118560109A 30/08/2024
Applicant: 
吉林大学
CN_118560109_A

Absstract of: CN118560109A

本发明公开仿生层级交叉结构的石墨烯/树脂复合材料及其制备方法,涉及树脂基复合材料技术领域,所述仿生层级交叉结构的石墨烯/树脂复合材料包括树脂基体以及位于所述树脂基体中的骨架;所述骨架包括上层骨架、中层骨架和下层骨架;所述上层骨架、中层骨架和下层骨架各自独立地包括若干个平行层叠排列的还原氧化石墨烯层,所述上层骨架中的还原氧化石墨烯层与所述下层骨架中的还原氧化石墨烯层平行,所述中层骨架中的还原氧化石墨烯层与所述上层骨架中的还原氧化石墨烯层之间的夹角为45°。本发明中的仿生层级交叉结构的石墨烯/树脂复合材料仿生海螺壳的交叉层状结构和珍珠层的“砖泥”结构,兼具高强度和高韧性。

一种用于检测食品中铜(II)离子的比率荧光传感器及应用

Publication No.:  CN118562501A 30/08/2024
Applicant: 
河南农业大学
CN_118562501_A

Absstract of: CN118562501A

本发明公开了一种用于检测食品中铜(II)离子的比率荧光传感器及应用,属于分析检测技术领域;该比率荧光传感器通过合成发蓝色荧光的碳点B‑CDs与发黄色荧光的碳点Y‑CDs,之后将二者进行简单混合形成一种比率型荧光传感器B‑CDs/Y‑CDs;由于铜(II)离子能够使B‑CDs和Y‑CDs同时发生聚集,但其中B‑CDs的荧光倍猝灭,而Y‑CDs的荧光则被增强,这种猝灭于增强的程度与铜(II)离子的添加浓度呈线性关系,从而构建了用于检测铜(II)离子的比率型荧光传感器B‑CDs/Y‑CDs。本发明的比率荧光传感器能够实现从荧光比值的定量检测和从荧光颜色的半定量检测;用于水样中铜(II)离子的检测范围为10~250nM及300~1300nM,具有灵敏度高、特异性强,检测方便的优点,能够为铜(II)离子的检测研发提供实验依据。

一种包覆改性的钴酸锂及其制备方法与用途

Publication No.:  CN118572058A 30/08/2024
Applicant: 
宜昌邦普时代新能源有限公司广东邦普循环科技有限公司湖南邦普循环科技有限公司
CN_118572058_A

Absstract of: CN118572058A

本发明提供了一种包覆改性的钴酸锂及其制备方法与用途,本发明通过以内部掺杂有纳米快离子导体的碳纳米管形成包覆层,对钴酸锂基体进行特殊包覆改性,利用快离子导体的优异的离子传输速率以及碳纳米管的导电桥构成的电子传输网络,使得这种特定的包覆可以使钴酸锂具有优异的电子传输性能和良好的离子电导率,可提升钴酸锂的倍率性能,同时可减少钴酸锂与电解质溶液的接触,抑制表面副反应的发生,从而改善钴酸锂的循环性能。

一种高纯钠铁基硫酸盐正极材料的制备方法和应用

Publication No.:  CN118572054A 30/08/2024
Applicant: 
北京理工大学
CN_118572054_A

Absstract of: CN118572054A

本发明涉及一种高纯钠铁基硫酸盐正极材料的工业化简单可控制备方法和应用,属于钠离子电池技术领域,通过研究解析正极材料相变机制,调控液相法中硫酸钠和硫酸亚铁的投料摩尔比,烧结温度和时间,最终获得了一种高纯钠铁基硫酸盐正极材料,实现了更少的杂质相含量和优秀的电化学性能。本发明的高纯钠铁基硫酸盐正极材由硫酸铁钠以及少量的杂质相组成,其结构为球形结构,主要由纳米尺度的多晶钠铁基硫酸盐一次颗粒紧密堆积形成,并且一次颗粒表面存在一层由有机碳高温热分解形成的非晶碳包覆层。高纯的相组成避免了过多杂质导致的比容量的降低和循环性能的下降,从而实现更高的低倍率放电比容量和更优的高倍率循环性能。

碳点在生物节律调节产品和生物节律相关疾病防治药物制备中的应用

Publication No.:  CN118557600A 30/08/2024
Applicant: 
苏州大学
CN_118557600_A

Absstract of: CN118557600A

本发明提供了碳点在生物节律调节产品和生物节律相关疾病防治药物制备中的应用,属于生物医学技术领域。本发明借助斑马鱼这一理想模式生物,对制备的碳点进行节律表型测定,并深入探究了碳点对生物体昼夜节律的影响机制。结果发现,碳点不仅能够影响斑马鱼主要生物钟基因的表达,而且也对糖皮质激素受体基因和褪黑素分泌基因产生显著影响,影响这两种激素的含量,从而调控斑马鱼的昼夜节律。同时也发现,碳点不仅能够降低斑马鱼的生物节律振幅,而且能缩短其周期,还能延长斑马鱼的相位。因此本发明为理解人类生物钟机制提供了新的视角,同时也为生物钟相关疾病的预防和治疗以及人类生活质量的提高等提供了新的思路。

碳点作为抑菌剂在药物制剂中的应用

Publication No.:  CN118557601A 30/08/2024
Applicant: 
河南省立眼科医院
CN_118557601_A

Absstract of: CN118557601A

本发明属于抑菌防腐技术领域,公开了碳点作为抑菌剂在药物制剂中的应用。碳点以50μg/ml(0.005 wt%)的浓度就能达到抑菌要求,碳点的使用浓度低、安全性高、抑菌性强,对于常见的细菌和真菌均有抑制能力。

一种核桃壳衍生碳点抗菌剂的制备方法及应用

Publication No.:  CN118561269A 30/08/2024
Applicant: 
昆明理工大学
CN_118561269_A

Absstract of: CN118561269A

本发明涉及一种核桃壳衍生碳点抗菌剂的制备方法及应用,所述碳点抗菌剂的制备方法包括以下步骤:1)选择核桃壳作为原材料;2)将核桃壳粉碎后,溶于水中形成溶液A;3)将溶液A置于反应釜中进行加热反应;4)将步骤3)中反应后的产物进行过滤,收集滤液为溶液B,所述的溶液B即为核桃壳衍生碳点抗菌剂。本发明的有益效果为:1)本发明制备了核桃壳衍生碳点抗菌剂,原材料成本低、制备方式简单,抗菌效果优异。2)本发明方法制备的核桃壳衍生碳点抗菌剂具有广谱抗菌作用,对于大肠杆菌效果非常显著。3)本发明制备的核桃壳衍生碳点抗菌剂具有较强的兼容性,可以作为污水处理剂、抗菌添加剂添加到各类需要抗菌的载体中。

一种高负载量钴单原子过渡金属基复合催化剂及其制备方法和氧还原应用

Publication No.:  CN118561265A 30/08/2024
Applicant: 
宝鸡文理学院
CN_118561265_A

Absstract of: CN118561265A

本发明属于催化剂制备技术领域,提供了一种高负载量钴单原子过渡金属基复合催化剂及其制备方法和氧还原应用。本发明的ZIF材料结合三苯基膦经热解反应转化为氮磷共掺杂的多孔碳,该多孔碳作为载体,将热解生成的单原子钴、钴纳米颗粒、钼物种(MoC)和钴物种(Co9S8)限域于其中。氮磷共掺杂的多孔碳能够改善催化剂的导电性,磷、氮元素的存在为金属单原子提供稳定环境,使得催化剂在保持单原子结构的同时,具有较高的金属负载量。同时由硫化钴生成的Co9S8增加催化剂的金属性,为催化剂进一步提供丰富的催化活性位点,使得催化剂在氧还原反应中表现出优异的性能,其半波电位可达0.94V,较Pt/C基催化剂相比高出90mV。

COMPOSITE POLYMER PARTICLES, POROUS CARBON PARTICLES AND METHOD FOR INDEPENDENT CONTROL OF PARTICLE DIAMETER AND PORE SIZE OF POROUS CARBON PARTICLES

Publication No.:  WO2024175686A1 29/08/2024
Applicant: 
ALBERT LUDWIGS UNIV FREIBURG [DE]
ALBERT-LUDWIGS-UNIVERSIT\u00C4T FREIBURG
WO_2024175686_A1

Absstract of: WO2024175686A1

The present invention relates to composite polymer particles and thereof derived porous carbon particles with tailored inter- and intraparticle properties. Furthermore, the present invention describes a hard-templating method involving polymerization and self- assembly of a monomer/oligomer/polymer around inorganic template particles for independently controlling the composite polymer particle size for a given template particle size and thereby the pore size and particle size of porous carbon nanoparticles. As a result, particle sizes of porous carbon particles can be generated independently of pore sizes via hard-templating processes.

PREPARATION METHOD FOR SILICON-CARBON COMPOSITE MATERIAL AND SILICON-CARBON COMPOSITE MATERIAL

Publication No.:  WO2024174294A1 29/08/2024
Applicant: 
SHIDA SHINGHWA ADVANCED MAT GROUP CO LTD [CN]
SHINGHWA ADVANCED MATERIAL TECH MEISHAN CO LTD [CN]
SHINGHWA ADVANCED MATERIAL TECH LIANJIANG CO LTD [CN]
\u77F3\u5927\u80DC\u534E\u65B0\u6750\u6599\u96C6\u56E2\u80A1\u4EFD\u6709\u9650\u516C\u53F8,
\u80DC\u534E\u65B0\u6750\u6599\u79D1\u6280\uFF08\u7709\u5C71\uFF09\u6709\u9650\u516C\u53F8,
\u80DC\u534E\u65B0\u6750\u6599\u79D1\u6280\uFF08\u8FDE\u6C5F\uFF09\u6709\u9650\u516C\u53F8
WO_2024174294_A1

Absstract of: WO2024174294A1

Disclosed are a preparation method for a silicon-carbon composite material and a silicon-carbon composite material. The method comprises preparing a porous carbon-doped porous copper complex, then depositing nano silicon on the porous carbon-doped porous copper complex by adopting a silane cracking method, and obtaining a silicon-carbon composite material. The steps for preparing a porous carbon-doped porous copper complex at least comprise: S11) uniformly mixing carbon disulfide, activated carbon, and an adhesive, and pressing the mixture into a copper foam to form a sheet-shaped structure; S12) transferring the sheet-shaped structure obtained in step S11) into a carbonization device, and heating and carbonizing in an inert atmosphere to obtain a porous carbon-doped porous copper complex. The present invention significantly addresses the problem where, when using only porous carbon as a substrate for depositing nano silicon, the nano silicon cannot be completely deposited within the porous carbon, leading to exposed nano silicon, which affects the expansion and high-temperature storage performance thereof. Meanwhile, the present invention also overcomes the notable deficiencies of using only porous metal for nano silicon deposition, such as poor consistency and low efficiency.

FIBROUS SILICON-CARBON COMPOSITE MATERIAL AND PREPARATION METHOD THEREFOR

Publication No.:  WO2024174293A1 29/08/2024
Applicant: 
SHIDA SHINGHWA ADVANCED MAT GROUP CO LTD [CN]
SHINGHWA ADVANCED MATERIAL TECH MEISHAN CO LTD [CN]
SHINGHWA ADVANCED MATERIAL TECH LIANJIANG CO LTD [CN]
\u77F3\u5927\u80DC\u534E\u65B0\u6750\u6599\u96C6\u56E2\u80A1\u4EFD\u6709\u9650\u516C\u53F8,
\u80DC\u534E\u65B0\u6750\u6599\u79D1\u6280\uFF08\u7709\u5C71\uFF09\u6709\u9650\u516C\u53F8,
\u80DC\u534E\u65B0\u6750\u6599\u79D1\u6280\uFF08\u8FDE\u6C5F\uFF09\u6709\u9650\u516C\u53F8
WO_2024174293_A1

Absstract of: WO2024174293A1

Disclosed are a fibrous silicon-carbon composite material and a preparation method therefor. The fibrous silicon-carbon composite material comprises a core-shell structure, the core of the core-shell structure being composed of a porous carbon fiber and a nanometer silicon, and the shell of the core-shell structure being composed of an inorganic lithium salt and an amorphous carbon. The present invention has the characteristic of high electronic conductivity, and a lithium-ion battery in which said material is applied presents excellent rate and cycle performance.

POSITIVE ELECTRODE COMPOSITION, POSITIVE ELECTRODE, AND BATTERY

Publication No.:  US2024290971A1 29/08/2024
Applicant: 
DENKA COMPANY LTD [JP]
Denka Company Limited
KR_20230172023_PA

Absstract of: US2024290971A1

A positive electrode composition containing carbon black, carbon nanotubes, an active material, and a binding material, in which the carbon black has a BET specific surface area of 100 to 400 m2/g and a crystallite size (Lc) of 15 to 26 Å, the carbon nanotubes have an average diameter of 5 to 15 nm, and a ratio (average diameter/BET specific surface area) of the average diameter with respect to a BET specific surface area of the carbon nanotubes is 0.01 to 0.068 nm/(m2/g).

SELF-STANDING ELECTRODES AND METHODS AND APPARATUS FOR MAKING THE SAME

Publication No.:  US2024290986A1 29/08/2024
Applicant: 
HONDA MOTOR CO LTD [JP]
Honda Motor Co., Ltd

Absstract of: US2024290986A1

Aspects of the present disclosure generally relate to battery technology, and more specifically relate to self-standing electrodes and to methods and apparatus for making the same. In an embodiment, a self-standing electrode is provided. The self-standing electrode includes nanotubes, electrode active material, and conductive material. In another embodiment, a method of forming a self-standing electrode is provided. The method includes aerosolizing or fluidizing electrode active material and conductive material. The method further includes depositing nanotubes, the aerosolized or fluidized electrode active material, and the aerosolized or fluidized conductive material on a porous substrate to form a self-standing electrode, the self-standing electrode comprising the nanotubes, the electrode active material, and the conductive material.

INTERACTIVE GRAPHENE POLYMER

Publication No.:  WO2024177952A1 29/08/2024
Applicant: 
MITO MAT SOLUTIONS INC [US]
MITO MATERIAL SOLUTIONS, INC
WO_2024177952_A1

Absstract of: WO2024177952A1

Disclosed herein are graphene compositions and methods of use and making thereof. The graphene compositions may comprise graphene and a polymer. The graphene compositions may be used in fiber sizing.

TWO-DIMENSIONAL METAL NANOSHEETS, PREPARATION METHOD THEREFOR, AND THERMAL INTERFACE MATERIAL

Publication No.:  WO2024174133A1 29/08/2024
Applicant: 
QIANWAN INSTITUTE NINGBO INSTITUTE OF MATERIALS TECH AND ENGINEERING [CN]
NINGBO INSTITUTE OF MATERIALS TECH AND ENGINEERING CHINESE ACADEMY OF SCIENCES [CN]
\u5B81\u6CE2\u676D\u5DDE\u6E7E\u65B0\u6750\u6599\u7814\u7A76\u9662,
\u4E2D\u56FD\u79D1\u5B66\u9662\u5B81\u6CE2\u6750\u6599\u6280\u672F\u4E0E\u5DE5\u7A0B\u7814\u7A76\u6240
WO_2024174133_A1

Absstract of: WO2024174133A1

The present application discloses two-dimensional metal nanosheets, a preparation method therefor, and a thermal interface material, and belongs to the field of heat-conducting metal filler material. The two-dimensional metal nanosheet preparation method comprises the following steps: S1. crushing a mixture containing a nano-metal foil and an auxiliary substance, obtaining a dispersion; and S2. mixing a material containing the dispersion and a solvent, and performing solid-liquid separation to obtain the two-dimensional metal nanosheets. The present application brings into contact a nano-thickness high-purity metal foil with a brittle substance which is easily dissolved or etched in a liquid phase environment, and by means of high-speed mechanical crushing, obtains two-dimensional metal nanosheets having an identical nano-thickness. The top-down preparation method achieves prepared two-dimensional metal nanosheets having no obvious lattice defects and impurities and inheriting the high intrinsic characteristics of the original metal film, and applies the two-dimensional metal nanosheets to the field of heat-conducting filler materials, with the prepared thermal interface material having high thermal conductivity.

COMPOSITE POLYMER PARTICLES, POROUS CARBON PARTICLES AND METHOD FOR INDEPENDENT CONTROL OF PARTICLE DIAMETER AND PORE SIZE OF POROUS CARBON PARTICLES

Publication No.:  EP4421110A1 28/08/2024
Applicant: 
UNIV FREIBURG ALBERT LUDWIGS [DE]
Albert-Ludwigs-Universit\u00E4t Freiburg
EP_4421110_A1

Absstract of: EP4421110A1

The present invention relates to composite polymer particles and thereof derived porous carbon particles with tailored inter- and intraparticle properties. Furthermore, the present invention describes a hard-templating method involving polymerization and self-assembly of a monomer/oligomer/polymer around inorganic template particles for independently controlling the composite polymer particle size for a given template particle size and thereby the pore size and particle size of porous carbon nanoparticles. As a result, particle sizes of porous carbon particles can be generated independently of pore sizes via hard-templating processes.

METHOD FOR SYNTHESIZING CARBON NANOTUBES

Publication No.:  EP4421029A1 28/08/2024
Applicant: 
LG CHEMICAL LTD [KR]
TEKNA PLASMA SYSTEMS INC [CA]
LG Chem, Ltd,
Tekna Plasma Systems Inc
EP_4421029_A1

Absstract of: EP4421029A1

The present invention relates to a method for synthesizing carbon nanotubes using a nanoparticle catalyst prepared by vaporizing a catalyst raw material using plasma and then condensing the vaporized catalyst raw material, and use of the production method of the present invention can make the synthesized carbon nanotubes have high crystallinity, and facilitate the mass synthesis.

一种吲哚基碳化聚合物点在细菌成像中的医用用途

Publication No.:  CN118549394A 27/08/2024
Applicant: 
吉林大学
CN_118549394_A

Absstract of: CN118549394A

本发明公开了一种吲哚基碳化聚合物点在细菌成像中的医用用途,提供了吲哚基碳化聚合物点In‑CPDs的新用途。In‑CPDs具有良好的NIR‑Ⅱ的光学特性,尤其在细菌环境中可发生的明显的荧光增强现象,这一特点不仅可以实现体外的细菌鉴别,还可实现体内细菌感染的特异性诊断。

半胱氨酸与岩藻多糖荧光碳量子点的制备方法及其应用

Publication No.:  CN118545704A 27/08/2024
Applicant: 
广东海洋大学
CN_118545704_A

Absstract of: CN118545704A

本发明公开了半胱氨酸与岩藻多糖荧光碳量子点的制备方法及其应用,属于纳米材料制备以及应用技术领域。本发明以来源于褐藻的天然大分子岩藻多糖和半胱氨酸为前体,通过水热法合成了Cys/Fu‑CQDs,最佳制备工艺为:加热时间6h,岩藻多糖与半胱氨酸的质量比5:2。Fe3+(10~200μmol/L)和Cr6+(10~300μmol/L)能够高效淬灭Cys/Fu‑CQDs荧光,并呈良好线性关系。因此,Cys/Fu‑CQDs可用于Fe3+和Cr6+的检测。本发明为开发新型高灵敏高选择性碳基纳米荧光探针提供了新思路,同时也拓展了海洋生物质资源的开发利用途径。

一种氧化钴/碳基电极材料及其制备方法和在制备非酶葡萄糖电化学传感器中的应用

Publication No.:  CN118545768A 27/08/2024
Applicant: 
川北医学院
CN_118545768_A

Absstract of: CN118545768A

本发明公开了一种氧化钴/碳基电极材料及其制备方法和在制备非酶葡萄糖电化学传感器中的应用,属于电化学传感器技术领域;将金属有机框架ZIF‑67原位生长在多壁碳纳米管表面,经过高温煅烧后,得到氧化钴/碳基电极材料;该电极材料中,Co3O4均匀分散在CNTs表面,具有更大的比表面积并暴露出更多的活性位点,且Co3O4独特的褶皱结构能够使电极材料与Glu充分接触,从而有效提高电催化效率;此外,将该电极材料修饰到GCE表面后制得电化学传感器的工作电极,构建的GCE/CNTs/Co3O4电化学传感器对Glu表现出良好的催化活性,同时具有较宽的响应范围、较好的选择性和稳定性,可实现对Glu的高灵敏实时监测。

一种嵌入型硅碳材料的制备方法

Publication No.:  CN118545725A 27/08/2024
Applicant: 
天津晨祥丰凯新材料科技有限公司
CN_118545725_A

Absstract of: CN118545725A

本发明涉及一种嵌入型硅碳材料的制备方法,包括将硅源经表面修饰处理后在催化剂的催化作用下溶解于水溶液中,搅拌均匀,制得硅溶胶;将有机原材料加入到步骤S1所制硅溶胶中,均匀分散在溶液中,硅溶胶与有机溶胶共生长形成嵌入型的SiO2‑有机湿凝胶;将步骤S2所制嵌入型的SiO2‑有机凝胶密封,老化,干燥,制得嵌入型的SiO2‑有机气凝胶;将步骤S3所制嵌入型的SiO2‑有机气凝胶经第一次高温处理,碳化生成嵌入型的SiO2‑C气凝胶;将步骤S4所制嵌入型的SiO2‑C气凝胶进行第二次高温处理,制得嵌入型的SiOx‑C纳米材料;本发明的制备设计巧妙,工艺简单,可实现大规模生产。

一种铁掺杂生物质碳点的制备方法及其应用

Nº publicación: CN118545703A 27/08/2024

Applicant:

山西医科大学口腔医院

CN_118545703_A

Absstract of: CN118545703A

本发明的目的在于提供一种铁掺杂生物质碳点的制备方法及其应用,属于碳点杀菌技术领域,本发明以生物质中草药杜仲为碳源,氯化铁六水合物为铁掺杂剂,制备出高生物相容性的抗菌碳点。本发明制备方法简单环保,成本低,所制备的材料生物相容性好,细胞毒性低,具有类酶活性,杀菌作用强,且具有明显的伤口愈合效果,在临床应用中具有很好的应用前景。

traducir