Absstract of: FR3158848A1
GÉNÉRATEUR ÉLECTRIQUE, PROCÉDÉ DE CONVERSION ET PROCÉDÉ D’UTILISATION D’UN TEL GÉNÉRATEUR ÉLECTRIQUE Un générateur électrique comporte des modules photovoltaïques (1), une station (6) et une station additionnelle (10) reliées par un câble porteur (4a) supportant les modules photovoltaïques (1) et un câble tracteur (4b) déplaçant les modules photovoltaïques (1). Chaque module photovoltaïque (1) est fixé au câble tracteur (4b) par un connecteur (5) débrayable. Une station (6) est munie de moyens de déplacement du câble tracteur (4b) pour déplacer les modules photovoltaïques (1) le long de la boucle par rapport à la station (6). Un circuit de commande (9) est configuré pour déplacer les modules photovoltaïques (1) d’une position de production à une position de repos en déplaçant le câble tracteur (4b).
Absstract of: US2025247039A1
Aspects of the present disclosure are directed to an electrolysis chamber. In some aspects, the electrolysis chamber includes a floor and sidewalls defining an interior region configured to contain an electrolyte solution; a cation pod and an anion pod disposed in the interior region, each of the cation pod and the anion pod including a gas containment cap terminating at a respective gas vent port; a pod divider extending from the gas containment caps partway toward the floor so as to separate at least a portion of the cation pod from the anion pod; a plurality of vertically stacked cation electrolysis mesh screens arranged within the cation pod; and a plurality of vertically stacked anion electrolysis mesh screens arranged within the anion pod.
Absstract of: US2025247041A1
A building integrated thermal and photovoltaic cladding system includes: an exterior layer including photovoltaic elements, an interior layer including heat exchange modules; a load-bearing structure including one or more spacers configured to maintain the exterior layer in spaced apart relation to the interior layer, and providing an air flow conduit therebetween for receiving air from the exterior, the air flow generally passing over the interior layer by natural circulation.
Absstract of: US2025246388A1
Embodiments of the invention provides a smart outdoor switchgear for control and protection of connection and disconnection of a medium-voltage microgrid, which includes: a current transformer, an isolating switch mechanism, an outdoor circuit breaker, an electric isolating driving mechanism and an outdoor jet type fuse. The current transformer is installed on an outlet end of the outdoor circuit breaker. The isolating switch mechanism is connected to the current transformer, and the isolating switch mechanism is connected to the outlet end of the outdoor circuit breaker through the current transformer. A top of the isolating switch mechanism on a side away from the current transformer is connected to a top of the outdoor jet type fuse, and a bottom of the isolating switch mechanism on the side away from the current transformer is connected to a bottom of the outdoor jet type fuse. The electric isolating driving mechanism is installed on the bottom of the isolating switch mechanism.
Absstract of: AU2024278637A1
MOUNTING BRACKET FOR AN OFFSHORE PHOTOVOLTAIC MODULE A mounting bracket (2) for an offshore photovoltaic module includes a buoyancy body (21) extending along a lengthwise direction (A), a first pole (22) and a second pole (23) disposed on and extending from the buoyancy body (21) along a height direction (B) 5 and spaced apart from each other in the lengthwise direction (A), and a reinforcing beam (24) and a carrying beam (25) connected with the first and second poles (22, 23). Each of the first and second poles (22, 23) has a U-shaped cross-section for increasing the second moment of area, thereby improving the resistance to flexure of the first and second poles (22, 23). The reinforcing beam (24) extending in an inclined manner to 10 further improve the resistance to flexure in the lengthwise direction (A) so as to enhance the rigidity and durability of the entire offshore photovoltaic module assembly. (FIG. 2) MOUNTING BRACKET FOR AN OFFSHORE PHOTOVOLTAIC MODULE A mounting bracket (2) for an offshore photovoltaic module includes a buoyancy body (21) extending along a lengthwise direction (A), a first pole (22) and a second pole 5 (23) disposed on and extending from the buoyancy body (21) along a height direction (B) and spaced apart from each other in the lengthwise direction (A), and a reinforcing beam (24) and a carrying beam (25) connected with the first and second poles (22, 23). Each of the first and second poles (22, 23) has a U-shaped cross-section for increasing th
Absstract of: AU2024291327A1
A cell, a photovoltaic module, and a packaging method for a cell. The cell is a back-contact solar cell, and since a light receiving face of the cell is covered with a protection layer, the light receiving face of the cell can be prevented from being scratched due to the stacking and transportation of cells; and isolation paper does not need to be placed between two adjacent cells, thus reducing a fault rate of a production line.
Absstract of: AU2025200182A1
WIND AND WAVE REDUCTION DEVICE FOR AN OFFSHORE SOLAR PHOTOVOLTAIC MODULE AND WIND AND WAVE REDUCTION SYSTEM INCLUDING THE SAME A wind and wave reduction device includes base seats (11) and base pipes (12). Each base seat (11) has two lateral ends and through holes (110) disposed between the lateral ends. Each base pipe (12) extends through a respective one of the through holes (110) of each of the base seats (11). Step plates (16) are disposed on support frames (15), and each of the support frames (15) is positioned between two adjacent ones of the base pipes (12). A lateral frame (21) is connected transversely to one of the lateral ends of each of the base seats (11). A blocking plate (22) is fixed to the lateral frame (21) and has air disturbing holes (220). (Fig. 1) WIND AND WAVE REDUCTION DEVICE FOR AN OFFSHORE SOLAR PHOTOVOLTAIC MODULE AND WIND AND WAVE REDUCTION SYSTEM INCLUDING THE SAME A wind and wave reduction device includes base seats (11) and base pipes (12). Each base seat (11) has two lateral ends and through holes (110) disposed between the lateral ends. Each base pipe (12) extends through a respective one of the through holes (110) of each of the base seats (11). Step plates (16) are 10 disposed on support frames (15), and each of the support frames (15) is positioned between two adjacent ones of the base pipes (12). A lateral frame (21) is connected transversely to one of the lateral ends of each of the base seats (11). A blocking plate (22) is fixed to the l
Absstract of: AU2025200186A1
SUPPORT SYSTEM FOR OFFSHORE SOLAR PHOTOVOLTAICS EQUIPMENT A support system for offshore solar photovoltaics equipment includes a float platform (1), float bodies (2), a ballast member (4), and a carrier frame (6) disposed on the float platform (1) and defining an accommodating space (61). The float platform (1) defines a plurality of limiting grooves (111) each of which extends in the longitudinal direction (A) and that are spaced apart from each other in a transverse direction (B) transverse to the longitudinal direction (A). The float bodies (2) are disposed in the limiting grooves (111) and protrude out of a bottom surface of the float platform (1). Each float body (2) surrounds and defines an inner space (21) adapted for a liquid or a gas to be filled therein. The ballast member (4) is connected to the float platform (1) and extends downwardly from the float platform (1) across bottom sides of the float bodies (2). (Figure 3) SUPPORT SYSTEM FOR OFFSHORE SOLAR PHOTOVOLTAICS EQUIPMENT A support system for offshore solar photovoltaics equipment includes a float platform (1), float bodies (2), a ballast member (4), and a carrier frame (6) disposed 5 on the float platform (1) and defining an accommodating space (61). The float platform (1) defines a plurality of limiting grooves (111) each of which extends in the longitudinal direction (A) and that are spaced apart from each other in a transverse direction (B) transverse to the longitudinal direction (A). The float bodies (2)
Absstract of: AU2023422671A1
An augmented logarithmic spiral antenna structure includes a first conductive layer, a. dielectric layer and a second conductive layer. The first conductive layer includes a first spiral arm and a plurality of second spiral arms. The first spiral arm includes a first initial radius. The second spiral arms are disposed around and connected to the first spiral arm, and each of the second spiral arms includes a second initial radius. The dielectric layer has a top surface and a bottom surface, and the top surface is connected to the first conductive layer. The second conductive layer is connected, to the bottom surface. A plurality of the second initial radii of the second spiral arms are different from each other, and different from the first initial radius.
Absstract of: AU2025205400A1
A method of simulating operation of a hybrid electrical power generation system having a battery energy storage system (BESS), a renewable energy (RE) power plant, and a combustion power plant, the method comprising: obtaining weather data for a location of the hybrid electrical power generation system, the weather data including a plurality of data points; and for each data point: determining an operating status of the BESS, the RE power plant, and the combustion power plant; in response to determining that an electrical power output of the RE power plant is sufficient to satisfy an electrical demand of the hybrid electrical power generation system and that a state of charge of the BESS is above a threshold value: dispatching the RE power plant to satisfy the electrical demand; in response to determining that the electrical power output of RE power plant is insufficient to satisfy the electrical demand, the state of charge of the BESS is above the threshold value, and the combustion power plant is not operating: dispatching the RE power plant to partially satisfy the electrical demand; and demanding the BESS to at least partially satisfy the electrical demand; and in response to determining that the electrical demand of the RE power plant is insufficient to satisfy the electrical demand, the state of charge of the BESS is above the threshold value, and the combustion power plant is operating: dispatching the RE power plant to partially satisfy the electrical demand; and dema
Absstract of: AU2025205587A1
The present application relates to the technical field of solar photovoltaics. Provided are a 5 perovskite cell and a photovoltaic module. The perovskite cell comprises a perovskite light absorption layer, a first carrier transport layer, a second carrier transport layer, a first transparent electrode layer, a second transparent electrode layer, and an optical adjustment layer, wherein the optical adjustment layer is arranged between the second carrier transport layer and the second transparent electrode layer; and the transmittance of the optical adjustment layer for visible light 10 is greater than or equal to a preset transmittance, and the reflectivity of the optical adjustment layer for infrared light is greater than or equal to a preset reflectivity. In the present application, the transmittance of an optical adjustment layer for visible light is greater than or equal to a preset transmittance, such that the efficiency of the perovskite cell and the lighting requirement of a building can be ensured; in addition, when the reflectivity of the optical adjustment layer for 15 infrared light is greater than or equal to a preset reflectivity, the requirements of the building for heat preservation, refrigeration, etc., can be ensured, thereby reducing the energy loss caused by the requirements of the building for heat preservation and refrigeration. ul h e p r e s e n t a p p l i c a t i o n r e l a t e s t o t h e t e c h n i c a l f i e l d o f s o l a r p h o t o v o l t a
Absstract of: AU2025205230A1
Error! Unknown document property name..Error! Unknown document property name. Abstract A mounting system for mounting a solar panel assembly to a base assembly includes a panel support bracket, a base bracket and a clamp configured to exert a compressive force to hold the panel support bracket and the base bracket together. The clamp comprises a V- shaped clamp body that includes a pair of legs that are spring-loaded to oppose an approximation of the legs by an external compressive force. The clamp includes a pair of receiver slots, with each of the pair of receiver slots located on a corresponding one of the pair of legs. The pair of receiver slots collectively provides a clearance to admit the panel support bracket and the base bracket when the legs are compressed together. Abstract A mounting system for mounting a solar panel assembly to a base assembly includes a panel support bracket, a base bracket and a clamp configured to exert a compressive force to hold the panel support bracket and the base bracket together. The clamp comprises a V- shaped clamp body that includes a pair of legs that are spring-loaded to oppose an approximation of the legs by an external compressive force. The clamp includes a pair of receiver slots, with each of the pair of receiver slots located on a corresponding one of the pair of legs. The pair of receiver slots collectively provides a clearance to admit the panel support bracket and the base bracket when the legs are compressed together. Erro
Absstract of: DE102025101676A1
Aufgabe der Erfindung ist es modulare und leicht zu transportierende und leicht zu montierende Ständerelemente, sowie eine modulare und leicht zu montierende Ständerelementanordnung unter Verwendung der Ständerelemente für eine Ständeranordnung zu schaffen.Ständerelement (1) zur Aufstellung und Anordnung für zumindest ein Photovoltaikmodul (3) , wobei das Ständerelement (1) zumindest ein Betonformsteinelement (1) und zumindest ein Verbindungselement (2) aufweist, wobei das zumindest eine Betonformsteinelement (1) mittels zumindest eines Verbindungselementes (2) mit zumindest einem weiteren Betonformsteinelement (1) verbindbar ist und das zumindest eine Photovoltaikmodul (3) an den Betonsteinelementen anordbar ist, dadurch gekennzeichnet, dass das zumindest eine Betonformsteinelement (1) quaderförmige Grundform aufweist, wobei an dem zumindest einen Betonformsteinelement (1) zumindest eine Durchgangsöffnung (4) zwischen zwei gegenüberliegenden Außenflächen (5) vorhanden ist und sich zu einer zu den gegenüberliegenden Außenflächen (5) angrenzenden Außenfläche (6) erstreckt und wobei die Durchgangsöffnung (4) in Bezug oder Richtung zur angrenzenden Außenfläche (6) eine hinterschnittene Durchgangsaussparung (7) mit einem Querschnitt im Betonformsteinelement (1) bildet und dass das zumindest eine Verbindungselement (2) zumindest im Überlappungsbereich (8) mit der zumindest einen hinterschnittenen Durchgangsaussparung (7) einen komplementären Querschnitt aufw
Absstract of: DE102024102720A1
Vorrichtung (20) zur Montage eines Befestigungselements (48), welches zur Befestigung von Dachaufbauten, insbesondere von Kollektoren (64), auf einem aus Konterlattung (15) und Traglattung (14, 14a, 14b) bestehenden Dachstuhl dient, wobei die Vorrichtung (20) mindestens zwei Traglattungen (14a, 14b) überbrückt und das Befestigungselement (48) gegenüber der Ebene der Vorrichtung (20) im Winkel absteht und fußseitig mit der Vorrichtung (20) verbunden ist, wobei die Vorrichtung (20) mindestens an ihrem traufseitigen Ende (22) einen Montagewinkel (27) aufweist, mit dem sich die Vorrichtung (20) auf der Traglattung (14b) abstützt und mit dieser verbindbar ist.
Absstract of: DE102024102293A1
Die Erfindung betrifft ein Solarsystem zum Bereitstellen einer Photovoltaikanlage auf einem Wasserkörper, aufweisend eine Haltestruktur, eine Auftriebseinrichtung und eine Photovoltaikeinrichtung, wobei die Auftriebseinrichtung und die Photovoltaikeinrichtung mittels der Haltestruktur miteinander verbunden sind, die Haltestruktur in einer Schwimmlage der Auftriebseinrichtung mit einem hydrostatischen Auftrieb der Auftriebseinrichtung auf einer Wasseroberfläche des Wasserkörpers gehalten ist und die Haltestruktur die Photovoltaikeinrichtung in der Schwimmlage der Auftriebseinrichtung oberhalb der Wasseroberfläche zum Erzeugen von elektrischer Energie aus Sonnenlicht für Sonnenlicht zugänglich aufgenommen ist, wobei die Auftriebseinrichtung eine Auftriebsanpassungseinrichtung zum Verändern des hydrostatischen Auftriebs aufweist, wobei bei einem mittels der Auftriebsanpassungseinrichtung reduzierten hydrostatischen Auftrieb ein Absenken des Solarsystems und insbesondere der Photovoltaikeinrichtung in eine Tauchposition unterhalb der Wasseroberfläche ermöglicht ist. Des Weiteren betrifft die Erfindung ein Verfahren zum reversiblen Schützen einer Photovoltaikanlage.
Absstract of: WO2025157418A1
An apparatus and method for determining an optimised arrangement of a photovoltaic system for a geographic area are provided. Load data and solar irradiation data for the geographic area, and arrangements of pre-existing photovoltaic panels and potential arrangements for one or more additional photovoltaic panels, are acquired (201). Photovoltaic parameters are determined (202) based upon the arrangements of pre-existing photovoltaic panels and the potential arrangements for additional photovoltaic panels. Power consumption patterns based on the load data, and photovoltaic generation patterns based on the solar irradiation data, are determined (203). An objective function is determined (204) to meet load requirements with photovoltaic placement. The optimised arrangement of the photovoltaic system is determined (205) using the objective function and the photovoltaic parameters.
Absstract of: BE1032310A1
Deze uitvinding betreft een dakhaak (1) voor het bevestigen van een dakelement aan een dakconstructie en een samenstel van de dakhaak (1) en de dakconstructie. Deze dakhaak (1) omvat een onderste deel (2), een L-vormig bovenste deel (3), een middelste deel (6), dat het onderste deel (2) en het bovenste deel (3) met elkaar verbindt, en een voetsteun (7), die met een eerste uiteinde (8) verbonden is met de opstaande arm (5). Het bovenste deel (3) is voorzien van een rib-structuur (11) en een langgerekte bevestigingssleuf (12) voor het hier doorheen aanbrengen van bevestigingsmiddelen ter bevestiging van het dakelement, waarbij deze bevestigingssleuf (12) omringd is door de rib-structuur (11), om het dakelement (1) zo dicht mogelijk bij de dakconstructie (20) te laten aansluiten zodat externe natuurkrachten, die toenemen door het veranderende klimaat, minder invloed hebben op de stabiliteit van de bevestiging van het dakelement met behulp van dergelijke dakhaken (1).
Absstract of: BE1032309A1
Deze uitvinding betreft een zonnepanelen-systeem (1), omvattende een aantal zonnepanelen (2), (40), een verplaatsbare container (9), (52), een bevestigingslichaam (22) en minstens één flexibele draaginrichting (18,19), (41,42), dat naar keuze in een niet-gebruikstoestand kan gebracht worden waarbij de zonnepanelen (2), (40) zich in een compacte opstelling in de container (9), (52), bevinden, of in een gebruikstoestand kan gebracht worden waarbij het bevestigingslichaam (22) zich op een tussenafstand van de container (9), (52) bevindt en waarbij de flexibele draaginrichting (18,19), (41,42) verbonden is met de container en met het bevestigingslichaam en, zich tussen de container (9), (52) en het bevestigingslichaam (22) uitstrekkend, minstens een deel van de zonnepanelen (2), (40) draagt in een gebruiksopstelling. Deze uitvinding betreft ook een werkwijze voor het opstellen van dit zonnepanelen-systeem alsook het gebruik ervan voor het beïnvloeden van omgevingsparameters voor een agrarische toepassing.
Absstract of: WO2025158470A1
The field of the technique of the following invention is that of wind and photovoltaic alternative energies. Normally these two solutions involve photovoltaic panels and turbines which are functionally distinct from each other and that also occupy different spaces. This invention proposes a unique support structure that allows the simultaneous use of a solar tracker and one or more turbines. The result is a hybrid device with all the equipment mounted on board that is simple to install.
Absstract of: WO2025160121A1
A support structure (200, 300, 400, 500a, 500b, 600a, 600b) for solar trackers with thermal expansion mitigation includes a frame (212, 312, 412, 512, 612a, 612b) rotatably coupled to one or more ground piles (216, 316, 416, 516, 616a, 616b). The support structure (200, 300, 400, 500a, 500b, 600a, 600b) further includes a pivot bracket (206, 306, 406, 606a, 606b) rotatably coupled to a portion of the frame (212, 312, 412, 512, 612a, 612b) with the pivot bracket (206, 306, 406, 606a, 606b) including a pivot pin (244) to which torque tube clamps (232, 332, 432, 532) are rotatably coupled. The torque tube clamps (232, 332, 432, 532) are affixed to a torque tube (204, 304, 404, 504) and solar modules are affixed to the torque tube (204, 304, 404, 504) via one or more mounting brackets. Thermal expansion/contraction of the torque tube (204, 304, 404, 504) is translated into rotational movement of the frame (212, 312, 412, 512, 612a, 612b) relative to the one or more ground piles (216, 316, 416, 516, 616a, 616b) via the rotatable couplings including the pivot bracket (206, 306, 406, 606a, 606b). The rotational movement of the frame (212, 312, 412, 512, 616a, 612b) relative to the one or more ground piles (216, 316, 416, 516, 616a, 616b) enables the torque tube (204, 304, 404, 504) to expand/contract while mitigating mechanical stress of the support structure (200, 300, 400, 500a, 500b, 600a, 600b).
Absstract of: WO2025156843A1
The present invention relates to the technical field of organic electroluminescent materials and provides an organic electroluminescent compound, host materials, and a light-emitting device and light-emitting apparatus comprising same. The host materials comprise an organic electroluminescent compound Lx and an organic electroluminescent compound Ly, wherein the mass ratio of Lx to Ly is 1:99-99:1, and the general structural formula of Lx and Ly are as shown in the description. In the present invention, a specific combination of host materials solves the problems in the prior art of low efficiency and short service life of a phosphorescent material applied to an organic electroluminescent device.
Absstract of: WO2025156736A1
Provided in the present application are a multi-electrolytic-cell series-parallel hydrogen production control method and a power generation system. The method in the present application comprises: acquiring electrolysis power parameters of a plurality of electrolytic cells and a real-time generation power of a power generation system; and then, on the basis of the plurality of electrolysis power parameters and the real-time generation power, controlling the plurality of electrolytic cells to sequentially and repeatedly execute electrolysis start-stop operations, wherein each electrolysis start-stop operation comprises: comparing the magnitude of a target round startup output power with the magnitude of a rated minimum electrolysis power of a target electrolytic cell; on the basis of a corresponding magnitude determination, performing subsequent control operations; and then in the subsequent control operations, performing a corresponding control operation by means of determining whether the target round startup output power exceeds a danger warning threshold power. Thus, the hydrogen production efficiency and flexibility of the plurality of electrolytic cells in the hydrogen production power generation system are improved, the stability of the hydrogen production power generation system is improved, and the service life of the hydrogen production power generation system is prolonged.
Absstract of: WO2025156558A1
The present application relates to the technical field of photovoltaics, and particularly discloses a photovoltaic module and a photovoltaic system. The photovoltaic module comprises: a laminated member and a frame fitted with the laminated member. The frame comprises a bearing portion and a blocking portion connected to the bearing portion. The bearing portion and the blocking portion surround to form an accommodating recess. In the thickness direction of the laminated member, the height of the top of the blocking portion is not higher than the height of a light-receiving surface of the laminated member. A first protrusion is provided in the accommodating recess, and the first protrusion divides the accommodating recess into a first accommodating recess and a second accommodating recess. In the thickness direction of the laminated member, there is a first distance L1 between the first protrusion and the top of the blocking portion, and there is a second distance L2 between the first protrusion and the top of the bearing portion, the distances satisfying 0.2≤L2:L1≤1. 2.
Absstract of: WO2025159944A1
A solar module frame coupling assembly (900) includes a solar module frame (908) and a rail (904). The solar module frame (908) includes a frame side portion (903) having a protruded guide structure (901). The rail (904) includes a first rail side (930) and a second rail side (931) that is opposite the first rail side (930). The second rail side (930) is configured to interface with a torque tube (14), and the first rail side (930) includes an alignment slot (902). The alignment slot (902) is configured to receive the protruded guide structure (901) to couple the solar module frame (908) to the rail (904).
Nº publicación: WO2025158085A1 31/07/2025
Applicant:
HADLAUER MARTIN [AT]
HADLAUER, Martin
Absstract of: WO2025158085A1
The invention relates to a distributor unit (54) for a tracked solar installation, the distributor unit (54) comprising at least one first line section (11a) having a first rotating block (1, 1a) and at least one second line section (11b) having a second rotating block (1b), wherein the first line section (11a) is rotatably connected to the first rotating block (1a) and wherein the second line section (11b) is rotatably connected to the second rotating block (1b), wherein a first transfer unit (45a) having a first connection piece (46a) for connecting to a line for cleaning liquid (9) of a base element, in particular of a stand (42), of the solar installation is provided on the first rotating block (1a), and a second transfer unit (45b) having a second connection piece (46b) for connecting to a line for cleaning liquid (9) of a first supporting arm (43) of the solar installation is provided on the second rotating block (1b), wherein the second transfer unit (45b) is connected to the first transfer unit (45a) via at least one first pipe connection (47a) running outside the first line section (11a) and outside the second line section (11b).